Package: hypergeo 1.2-15

hypergeo: The Gauss Hypergeometric Function

The Gaussian hypergeometric function for complex numbers.

Authors:Robin K. S. Hankin [aut, cre], Richard D. Morey [ctb]

hypergeo_1.2-15.tar.gz
hypergeo_1.2-15.zip(r-4.5)hypergeo_1.2-15.zip(r-4.4)hypergeo_1.2-15.zip(r-4.3)
hypergeo_1.2-15.tgz(r-4.4-x86_64)hypergeo_1.2-15.tgz(r-4.4-arm64)hypergeo_1.2-15.tgz(r-4.3-x86_64)hypergeo_1.2-15.tgz(r-4.3-arm64)
hypergeo_1.2-15.tar.gz(r-4.5-noble)hypergeo_1.2-15.tar.gz(r-4.4-noble)
hypergeo_1.2-15.tgz(r-4.4-emscripten)hypergeo_1.2-15.tgz(r-4.3-emscripten)
hypergeo.pdf |hypergeo.html
hypergeo/json (API)

# Install 'hypergeo' in R:
install.packages('hypergeo', repos = c('https://robinhankin.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/robinhankin/hypergeo/issues

Uses libs:
  • c++– GNU Standard C++ Library v3

On CRAN:

8.60 score 2 stars 73 packages 93 scripts 19k downloads 96 exports 6 dependencies

Last updated 4 months agofrom:e64c4148ab. Checks:OK: 7 NOTE: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 11 2024
R-4.5-win-x86_64NOTENov 11 2024
R-4.5-linux-x86_64NOTENov 11 2024
R-4.4-win-x86_64OKNov 11 2024
R-4.4-mac-x86_64OKNov 11 2024
R-4.4-mac-aarch64OKNov 11 2024
R-4.3-win-x86_64OKNov 11 2024
R-4.3-mac-x86_64OKNov 11 2024
R-4.3-mac-aarch64OKNov 11 2024

Exports:buhring_eqn11buhring_eqn12buhring_eqn5_factorsbuhring_eqn5_seriescomplex_factorialcomplex_gammacomplex_gamma_cppcomplex_odecritf15.1.1f15.3.1f15.3.10f15.3.10_11_12f15.3.10_af15.3.10_bf15.3.11f15.3.11_bit1f15.3.11_bit2_af15.3.11_bit2_bf15.3.12f15.3.12_bit1f15.3.12_bit2_af15.3.12_bit2_bf15.3.13f15.3.13_14f15.3.13_af15.3.13_bf15.3.14f15.3.14_bit1_af15.3.14_bit1_bf15.3.14_bit2f15.3.3f15.3.4f15.3.5f15.3.6f15.3.7f15.3.8f15.3.9f15.5.1genhypergeogenhypergeo_contfracgenhypergeo_contfrac_singlegenhypergeo_seriesgenhypergeo_series_cppgenhypergeo_shankshypergeohypergeo_A_nonpos_inthypergeo_AorB_nonpos_inthypergeo_buhringhypergeo_contfrachypergeo_cover1hypergeo_cover2hypergeo_cover3hypergeo_funchypergeo_generalhypergeo_gosperhypergeo_powerserieshypergeo_presshypergeo_residue_close_to_crit_multiplehypergeo_residue_close_to_crit_singlehypergeo_residue_generalhypergeo_shankshypergeo_taylori15.3.6i15.3.7i15.3.8i15.3.9is.near_integeris.nonposis.zeroisgoodj15.3.6j15.3.7j15.3.8j15.3.9lanczoslanczos_cpplphamsemicirclesemidashshanksstraightstraightdashthingfunto_complexto_realw07.23.06.0026.01w07.23.06.0026.01_bit1w07.23.06.0026.01_bit2w07.23.06.0026.01_bit3_aw07.23.06.0026.01_bit3_bw07.23.06.0026.01_bit3_cw07.23.06.0029.01w07.23.06.0031.01w07.23.06.0031.01_bit1w07.23.06.0031.01_bit2

Dependencies:contfracdeSolveellipticMASSRcppRcppArmadillo

The Gauss Hypergeometric function

Rendered fromhypergeo.Rnwusingutils::Sweaveon Nov 11 2024.

Last update: 2023-08-20
Started: 2021-09-04

Readme and manuals

Help Manual

Help pageTopics
The Gauss hypergeometric functionhypergeo-package
Evaluation of the hypergeometric function using Buhring's methodbuhring buhring_eqn11 buhring_eqn12 buhring_eqn5_factors buhring_eqn5_series hypergeo_buhring
Gamma function for complex argumentscomplex_factorial complex_gamma lanczos
Low-level C functionscomplex_gamma_cpp genhypergeo_series_cpp lanczos_cpp
Hypergeometric function using Euler's integral representationf15.3.1 hypergeo_integral
Transformations of the hypergeometric functionf15.1.1 f15.3.10 f15.3.10_11_12 f15.3.10_a f15.3.10_b f15.3.11 f15.3.11_bit1 f15.3.11_bit2_a f15.3.11_bit2_b f15.3.12 f15.3.12_bit1 f15.3.12_bit2_a f15.3.12_bit2_b f15.3.13 f15.3.13_14 f15.3.13_a f15.3.13_b f15.3.14 f15.3.14_bit1_a f15.3.14_bit1_b f15.3.14_bit2
Various transformation formulae for the hypergeometric functionf15.3.3 f15.3.4 f15.3.5 f15.3.6 f15.3.7 f15.3.8 f15.3.9
Hypergeometric functions via direct numerical integrationcomplex_ode f15.5.1 hypergeo_func hypergeo_press semicircle semidash straight straightdash to_complex to_real
The generalized hypergeometric functiongenhypergeo genhypergeo_contfrac genhypergeo_series
Evaluation of the hypergeometric function using Gosper's methodhypergeo_gosper
The hypergeometric functionhypergeo
Hypergeometric functions for nonpositive integer argumentshypergeo_AorB_nonpos_int hypergeo_A_nonpos_int
Continued fraction expansion of the hypergeometric functiongenhypergeo_contfrac_single hypergeo_contfrac
Hypergeometric functions for special values of the parametershypergeo_cover1 hypergeo_cover2 hypergeo_cover3
The hypergeometric function as determined by power serieshypergeo_general hypergeo_powerseries hypergeo_taylor
Helper functionsi15.3.6 i15.3.7 i15.3.8 i15.3.9 j15.3.6 j15.3.7 j15.3.8 j15.3.9
Various utilitiescrit is.near_integer is.nonpos is.zero isgood lpham thingfun
Evaluation of the hypergeometric function using the residue theoremhypergeo_residue hypergeo_residue_close_to_crit_multiple hypergeo_residue_close_to_crit_single hypergeo_residue_general
Evaluation of the hypergeometric function using Shanks's methodgenhypergeo_shanks hypergeo_shanks shanks
Various functions taken from the Wolfram Functions Sitew07.23.06.0026.01 w07.23.06.0026.01_bit1 w07.23.06.0026.01_bit2 w07.23.06.0026.01_bit3_a w07.23.06.0026.01_bit3_b w07.23.06.0026.01_bit3_c w07.23.06.0029.01 w07.23.06.0031.01 w07.23.06.0031.01_bit1 w07.23.06.0031.01_bit2 wolfram