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Abstract

This paper introduces the hypergeo package of R routines, for numerical calculation of
hypergeometric functions. The package is focussed on efficient and accurate evaluation of
the hypergeometric function over the whole of the complex plane within the constraints of
fixed-precision arithmetic. The hypergeometric series is convergent only within the unit
circle, so analytic continuation must be used to define the function outside the unit circle.
This short document outlines the numerical and conceptual methods used in the package;
and justifies the package philosophy, which is to maintain transparent and verifiable links
between the software and AMS-55. The package is demonstrated in the context of game
theory. To cite the package in publications, please use (Hankin 2015).
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1. Introduction
The geometric series

∑∞
k=0 tk with tk = zk may be characterized by its first term and the con-

stant ratio of successive terms tk+1/tk = z, giving the familiar identity
∑∞

k=0 z
k = (1 − z)−1.

Observe that while the series has unit radius of convergence, the right hand side is defined
over the whole complex plane except for z = 1 where it has a pole. Series of this type may
be generalized to a hypergeometric series in which the ratio of successive terms is a rational
function of k:

tk+1
tk

= P (k)
Q(k)

where P (k) and Q(k) are polynomials. If both numerator and denominator have been com-
pletely factored we would write

tk+1
tk

= (k + a1)(k + a2) · · · (k + ap)
(k + b1)(k + b2) · · · (k + bq)(k + 1)z

(the final term in the denominator is due to historical reasons), and if we require t0 = 1 then
we write

∞∑
k=0

tkz
k = aFb

[
a1, a2, . . . , ap

b1, b2, . . . , bq
; z
]

(1)
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when defined. An absent factor is indicated with a dash; thus 0F0

[
−
− ; z

]
= ez. In most

cases of interest one finds that p = 2, q = 1 suffices. Writing a, b, c for the two upper
and one lower argument respectively, the resulting function 2F1 (a, b; c; z) is known as the
hypergeometric function. Many functions of elementary analysis are of this form; examples
would include logarithmic and trigonometric functions, Bessel functions, etc. For example,
2F1

(
1
2 , 1; 3

2 ; −z2
)

= z−1 arctan z.

Michel and Stoitsov (2008) state that physical applications are “plethora”. In addition,
naturally-occuring combinatorial series frequently have a sum expressible in terms of hy-
pergeometric functions and an example from the author’s work in the field game theory is
given below.

1.1. Equivalent forms

The hypergeometric function’s series representation, namely

2F1 (a, b; c; z) =
∞∑

k=0

(a)k (b)k

(c)k k! z
k, (a)k = Γ(a+ k)/Γ(a) (15.1.1)

has unit radius of convergence by the ratio test but the integral form

2F1 (a, b; c; z) = Γ(c)
Γ(b)Γ(c− b)

∫ 1

t=0
tb−1(1 − t)c−b−1(1 − tz)−a dt, (15.3.1)

due to Gauss, furnishes analytic continuation; it is usual to follow Riemann and define a
cut along the positive real axis from 1 to ∞ and specify continuity from below [NB: equa-
tions with three-part numbers, as 15.1.1 and 15.3.1 above, are named for their reference
in Abramowitz and Stegun (1965)]. This is implemented as f15.3.1() in the package and
exhibits surprisingly accurate evaluation.
Gauss also provided a continued fraction form for the hypergeometric function [implemented
as hypergeo_contfrac() in the package] which has superior convergence rates for parts of
the complex plane at the expense of more complicated convergence properties (Cuyt et al.
2008).

2. The hypergeo package
The hypergeo package provides some functionality for the hypergeometric function; the em-
phasis is on fast vectorized R-centric code, complex z and moderate real values for the auxiliary
parameters a, b, c. The package is released under GPL-2.
Observing the slow convergence of the series representation 15.1.1, the complex behaviour
of the continued fraction representation, and the heavy computational expense of the inte-
gral representation 15.3.1, it is clear that non-trivial numerical techniques are required for a
production package.
The package implements a generalization of the method of Forrey (1997) to the complex
case. It utilizes the observation that the ratio of successive terms approaches z, and thus the



Robin K. S. Hankin 3

strategy adopted is to seek a transformation which reduces the modulus of z to a minimum.
Abramowitz and Stegun give the following transformations:

2F1 (a, b; c; z) = (1 − z)−a
2F1

(
a, c− b; c; z

z − 1

)
(15.3.4)

= (1 − z)−b
2F1

(
a, c− a; c; z

z − 1

)
(15.3.5)

= Γ (c) Γ (c− a− b)
Γ (c− a) Γ (c− b) 2F1 (a, b; a+ b− c+ 1; 1 − z)

+ (1 − z)c−a−b Γ (c) Γ (a+ b− c)
Γ (a) Γ (b) 2F1 (c− a, c− b; c− a− b+ 1; 1 − z)

(15.3.6)

= Γ (c) Γ (b− a)
Γ (b) Γ (c− a) (−z)−a

2F1

(
a, 1 − c+ a; 1 − b+ a; 1

z

)
+ Γ (c) Γ (a− b)

Γ (a) Γ (c− b) (−z)−b
2F1

(
b, 1 − c+ b; 1 − a+ b; 1

z

)
(15.3.7)

= (1 − z)−a Γ (c) Γ (b− a)
Γ (b) Γ (c− a) 2F1

(
a, c− b; a− b+ 1; 1

1 − z

)
+ (1 − z)−b Γ (c) Γ (a− b)

Γ (a) Γ (c− b) 2F1

(
b, c− a; b− a+ 1; 1

1 − z

)
(15.3.8)

= Γ (c) Γ (c− a− b)
Γ (c− a) Γ (c− b)z

−a
2F1

(
a, a− c+ 1; a+ b− c+ 1; 1 − 1

z

)
+ Γ (c) Γ (a+ b− c)

Γ (a) Γ (b) (1 − z)c−a−bza−c
2F1

(
c− a, 1 − a; c− a− b+ 1; 1 − 1

z

)
.

(15.3.9)

Observing that the set
{
z, z

z−1 , 1 − z, 1
z ,

1
1−z , 1 − 1

z

}
forms a group under functional compo-

sition1 we may apply each of the transformations to the primary argument z and choose the
one of smallest absolute value to evaluate.
Given the appropriate transformation, the right hand side is evaluated using direct sum-
mation. If |z| < 1, the series is convergent by the ratio test, but may require a large
number of terms to achieve acceptable numerical precision. Summation is dispatched to
genhypergeo_series() which evaluates the generalized hypergeometric function 1; the R
implementation uses multiplication by repeatedly incremented upper and lower indices ai, bi.
Thus for example if (1 − z)−1 is small in absolute value we would use function f13.3.8():

> require("hypergeo")
> f15.3.8

function(A,B,C,z,tol=0,maxiter=2000){
jj <- i15.3.8(A,B,C)

1It is the anharmonic subgroup of the Möbius transformations, generated by z −→ 1/z and z −→ 1 − z. It
is isomorphic to S3, the symmetric group on 3 elements.
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jj[1]*(1-z)^(-A)*genhypergeo(U=c(A,C-B),L=A-B+1,z=1/(1-z),tol=tol,maxiter=maxiter) +
jj[2]*(1-z)^(-B)*genhypergeo(U=c(B,C-A),L=B-A+1,z=1/(1-z),tol=tol,maxiter=maxiter)

}

(slightly edited in the interests of visual clarity). This is a typical internal function of the
package and like all similar functions is named for its equation number in Abramowitz and
Stegun (1965). Note the helper function i15.3.9(), which calculates the Gamma coefficients
of the two hypergeometric terms in the identity. This structure allows transparent checking
of the code.

2.1. Special cases

The methods detailed above are not applicable for all values of the parameters a, b, c. If,
for example, c = a + b ± m, m ∈ N (a not uncommon case), then equation 15.3.6 is not
useful because each term has a pole; and it is numerically difficult to approach the limit. In
this case the package dispatches to hypergeo_cover1() which uses 15.3.4 through 15.3.9 but
with 15.3.6 replaced with suitable limiting forms such as

2F1 (a, b; a+ b+m; z) = Γ(a+ b)
Γ(a)Γ(b)

∞∑
n=0

(a)n(b)n

(n!)2 [2ψ(n+ 1) − ψ(a+ n) − ψ(b+ n) − log(1 − z)] (1−z)n, π < |arg(1 − z)| < π, |1 − z| < 1

(15.3.11)
(Abramowitz and Stegun give a similar expression for negative m). This equation is compa-
rable to 15.3.6 in terms of computational complexity but requires evaluation of the digamma
function ψ. Equation 15.3.11 is evaluated in the package using an algorithm similar to that
for genhypergeo_series() but includes a runtime option which specifies whether to eval-
uate ψ (·) ab initio each time it is needed, or to use the recurrence relation ψ (z + 1) =
ψ (z) + 1/z at each iteration after the first. These two options appear to be comparable in
terms of both numerical accuracy and speed of execution, but further work would be needed
to specify which is preferable in this context.
A similar methodology is used for the case b = a ± m, m = 0, 1, 2, . . . in which case the
package dispatches to hypergeo_cover2().
However, the case c − a = 0, 1, 2, . . . is not covered by Abramowitz and Stegun (1965) and
the package dispatches to hypergeo_cover3() which uses formulae taken from the Wolfram
functions site (Wolfram 2014). For example w07.23.06.0026.01() gives a straightforwardly
implementable numerical expression for 2F1 as a sum of two finite series and a generalized
hypergeometric function 3F2 with primary argument z−1.
In all these cases, the limiting behaviour is problematic. For example, if a+b−c is close to, but
not exactly equal to, an integer then equation 15.3.11 is not applicable. The analytic value of
the hypergeometric function in these circumstances is typically of moderate modulus, but both
terms of equation 15.3.6 have large amplitude and numerics are susceptible to cancellation
errors.

2.2. Critical points

All the above methods fail when z = 1
2 ± i

√
3

2 , because none of the transformations 15.3.6-15.3.9
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change the modulus of z from 1. The function is convergent at these points but numerical
evaluation is difficult. This issue does not arise in the real case considered by Forrey (1997).
These points were considered by Buhring (1987) who presented a computational method
for these values; however, his method is not suitable for finite-precision arithmetic (a brief
discussion is presented at ?buhring) and the package employs either an iterative scheme due
to Gosper (Johansson et al. 2010), or the residue theorem if z is close to either of these points.

3. Package testing suite
The package comes with an extensive test suite in the tests/ directory. The tests fall into two
main categories, firstly comparison with either Maple or Mathematica output (although Becken
and Schmelcher (2000) caution that Mathematica routines cannot be used as reference values);
and secondly, verification of identities which appear in AMS-55 as named equations.

4. The package in use
The hypergeo package offers direct numerical functionality to the R user on the command
line. One example from the author’s current work is in game theory (Hankin 2020). Consider
a game in which a player is given n counters each of which she must allocate into one of two
boxes, A or B. At times t = 1, 2, 3 . . . a box is identified at random and, if it is not empty, a
counter removed from it; box A is chosen with probability p and box B with probability 1−p.
The object of the game is to remove all counters as quickly as possible. If the player places a
counters in box A and b in B, then the probability mass function of removing the final counter
at time t = a+ b+ r is

pa(1 − p)b

[(
a+ b+ r − 1
a− 1, b+ r

)
(1 − p)r +

(
a+ b+ r − 1
a+ r, b− 1

)
pr

]
, r = 0, 1, 2, . . . . (2)

The two terms correspond to the final counter being removed from box A or B respectively.
This PMF has expectation

pa(1 − p)b

[
p

(
a+ b

a+ 1, b− 1

)
2F1 (a+ b+ 1, 2; a+ 2; p) +

(1 − p)
(

a+ b

a− 1, b+ 1

)
2F1 (a+ b+ 1, 2; b+ 2; 1 − p)

]
(3)

with R idiom:

> expected <- function(a,b,p){
+ Re(
+ choose(a+b,b) * p^a * (1-p)^b * (
+ p *b/(1+a) * hypergeo(a+b+1,2,a+2, p) +
+ (1-p)*a/(1+b) * hypergeo(a+b+1,2,b+2,1-p) ))
+ }
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Thus if p = 0.8 and given n = 10 counters we might wonder whether it is preferable to allocate
them (8, 2) or (9, 1):

> c(expected(8,2,0.8),expected(9,1,0.8))

[1] 3.019899 1.921089

showing that the latter allocation is preferable in expectation.
The package is designed for use with R and Figure 1 shows the package being used to visu-
alize 2F1

(
2, 1

2 ; 2
3 ; z

)
over a region of the complex plane.

Figure 1: View of the function 2F1
(
2, 1

2 ; 2
3 ; z

)
evaluated over a part of the complex plane

using the hypergeo package. Function visualization following Thaller (1998) and the elliptic
package (Hankin 2006); hue corresponds to argument and saturation to modulus. Solid
contour lines correspond to real function values and dotted to imaginary function values.
Note the cut line along the real axis starting at (1, 0), made visible by an abrupt change in
hue
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4.1. Conclusions and further work

Evaluation of the hypergeometric function is hard, as evidenced by the extensive literature
concerning its numerical evaluation (Becken and Schmelcher 2000; Michel and Stoitsov 2008;
Forrey 1997; Buhring 1987). The hypergeo package is presented as a partial implementation,
providing reasonably accurate evaluation over a large portion of the complex plane and cov-
ering moderate real values of the auxiliary parameters a, b, c. Difficulties arise when b − a
or c− b− a become close to, but not exactly, integers because the terms in equations 15.3.6
through 15.3.9 become large and cancellation errors become important.
Further work might include extension to complex auxiliary parameters but Michel and Stoitsov
caution that this is not straightforward.
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