Package: elliptic 1.5-0

elliptic: Weierstrass and Jacobi Elliptic Functions

A suite of elliptic and related functions including Weierstrass and Jacobi forms. Also includes various tools for manipulating and visualizing complex functions.

Authors:Robin K. S. Hankin [aut, cre]

elliptic_1.5-0.tar.gz
elliptic_1.5-0.zip(r-4.5)elliptic_1.5-0.zip(r-4.4)elliptic_1.5-0.zip(r-4.3)
elliptic_1.5-0.tgz(r-4.4-any)elliptic_1.5-0.tgz(r-4.3-any)
elliptic_1.5-0.tar.gz(r-4.5-noble)elliptic_1.5-0.tar.gz(r-4.4-noble)
elliptic_1.5-0.tgz(r-4.4-emscripten)elliptic_1.5-0.tgz(r-4.3-emscripten)
elliptic.pdf |elliptic.html
elliptic/json (API)
NEWS

# Install 'elliptic' in R:
install.packages('elliptic', repos = c('https://robinhankin.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/robinhankin/elliptic/issues

On CRAN:

9.19 score 3 stars 78 packages 54 scripts 14k downloads 126 exports 1 dependencies

Last updated 5 months agofrom:d556341ee6. Checks:7 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 02 2025
R-4.5-winOKJan 02 2025
R-4.5-linuxOKJan 02 2025
R-4.4-winOKJan 02 2025
R-4.4-macOKJan 02 2025
R-4.3-winOKJan 02 2025
R-4.3-macOKJan 02 2025

Exports:%mob%amnas.primitivecccdckcncongruencecoquerauxcsdcdddivisordndse16.28.1e16.28.2e16.28.3e16.28.4e16.28.5e16.36.6ae16.36.6be16.36.7ae16.36.7be16.37.1e16.37.2e16.37.3e16.37.4e16.38.1e16.38.2e16.38.3e16.38.4e18.10.9e1e2e3eee.cardanoequianharmonicetaeta.seriesfactorizefareyfppg.fung2.fung2.fun.directg2.fun.divisorg2.fun.fixedg2.fun.lambertg2.fun.vectorizedg3.fung3.fun.directg3.fun.divisorg3.fun.fixedg3.fun.lambertg3.fun.vectorizedHH1half.periodsIm<-integrate.contourintegrate.segmentsis.primitiveJK.funlambdalatplotlatticelemniscaticlimitliouvillemassagemnmobmobiusmyintegratencndnear.matchnewton_raphsonnnnomenome.knsPP.laurentP.parip1.tauparametersPdashPdash.laurentprimespseudolemniscaticRe<-residuescsdsigmasigma.laurentsigmadash.laurentsnsqrtissThetatheta.00theta.01theta.10theta.11theta.ctheta.dtheta.ntheta.stheta1Theta1theta1.dash.zerotheta1.dash.zero.qtheta1dashtheta1dashdashtheta1dashdashdashtheta2theta3theta4totientunimodularunimodularityviewzetazeta.laurent

Dependencies:MASS

A vignette for the elliptic package

Rendered fromelliptic.Rnwusingutils::Sweaveon Jan 02 2025.

Last update: 2024-02-19
Started: 2022-06-17

The residue theorem from a numerical perspective

Rendered fromresiduetheorem.Rnwusingutils::Sweaveon Jan 02 2025.

Last update: 2018-08-24
Started: 2018-05-22

Readme and manuals

Help Manual

Help pageTopics
Weierstrass and Jacobi Elliptic Functionselliptic-package elliptic
matrix a on page 63718.5.7 18.5.8 amn
Converts basic periods to a primitive pairas.primitive is.primitive
Coefficients of Laurent expansion of Weierstrass P functionck e18.5.16 e18.5.2 e18.5.3
Solves mx+by=1 for x and ycongruence
Fast, conceptually simple, iterative scheme for Weierstrass P functionscoqueraux
Number theoretic functionsdivisor factorize liouville mobius primes totient
Numerical verification of equations 16.28.1 to 16.28.5e16.28.1 e16.28.2 e16.28.3 e16.28.4 e16.28.5
Numerical checks of equations 18.10.9-11, page 650e18.10.10 e18.10.10a e18.10.10b e18.10.11 e18.10.11a e18.10.11b e18.10.12 e18.10.12a e18.10.12b e18.10.9 e18.10.9a e18.10.9b
Calculate e1, e2, e3 from the invariantse18.3.1 e18.3.7 e18.3.8 e1e2e3 eee.cardano
Special cases of the Weierstrass elliptic functionequianharmonic lemniscatic pseudolemniscatic
Dedekind's eta functioneta eta.series
Farey sequencesfarey
Fundamental period parallelogramfpp mn
Calculates the invariants g2 and g3e18.1.1 g.fun g2.fun g2.fun.direct g2.fun.divisor g2.fun.fixed g2.fun.lambert g2.fun.vectorized g3.fun g3.fun.direct g3.fun.divisor g3.fun.fixed g3.fun.lambert g3.fun.vectorized
Calculates half periods in terms of ehalf.periods
Various modular functionsJ lambda
quarter period Ke16.1.1 K.fun
Plots a lattice of periods on the complex planelatplot
Lattice of complex numberslattice
Limit the magnitude of elements of a vectorlimit
Massages numbers near the real line to be realmassage
Manipulate real or imaginary components of an objectIm<- Re<-
Moebius transformations%mob% mob
Complex integrationintegrate.contour integrate.segments myintegrate residue
Are two vectors close to one another?near.match
Newton Raphson iteration to find roots of equationsNewton_Raphson Newton_raphson newton_Raphson newton_raphson
Nome in terms of m or knome nome.k
Laurent series for elliptic and related functionse18.5.1 e18.5.4 e18.5.5 e18.5.6 e18f.5.3 P.laurent Pdash.laurent sigma.laurent sigmadash.laurent zeta.laurent
Does the Right Thing (tm) when calling g2.fun() and g3.fun()p1.tau
Parameters for Weierstrass's P functione18.3.3 e18.3.37 e18.3.38 e18.3.39 e18.3.5 e18.7.4 e18.7.5 e18.7.7 parameters
Wrappers for PARI functionsGP Gp gp P.pari PARI pari
Jacobi form of the elliptic functionscc cd cn cs dc dd dn ds e16.36.3 nc nd nn ns sc sd sn ss
Generalized square rootsqrti
Jacobi theta functions 1-4e16.27.1 e16.27.2 e16.27.3 e16.27.4 e16.31.1 e16.31.2 e16.31.3 e16.31.4 H H1 Theta theta theta.00 theta.01 theta.10 theta.11 Theta1 theta1 theta2 theta3 theta4
Neville's form for the theta functionse16.36.6 e16.36.6a e16.36.6b e16.36.7 e16.36.7a e16.36.7b e16.37.1 e16.37.2 e16.37.3 e16.37.4 e16.38.1 e16.38.2 e16.38.3 e16.38.4 theta.c theta.d theta.n theta.neville theta.s
Derivative of theta1e16.28.6 theta1.dash.zero theta1.dash.zero.q
Derivatives of theta functionstheta1dash theta1dashdash theta1dashdashdash
Unimodular matricesunimodular unimodularity
Visualization of complex functionsview
Weierstrass P and related functionse18.10.1 e18.10.2 e18.10.3 e18.10.4 e18.10.5 e18.10.6 e18.10.7 P Pdash sigma WeierstrassP zeta