ex
, ey
, and
ez
in the stokes
packageTo cite the stokes
package in publications, please use
Hankin (2022). Convenience objects
ex
, ey
, and ez
are discussed here
(related package functionality is discussed in dx.Rmd
). The
dual basis to (dx, dy, dz) is,
depending on context, written (ex, ey, ez),
or (i, j, k)
or sometimes $\left(\frac{\partial}{\partial
x},\frac{\partial}{\partial
x},\frac{\partial}{\partial x}\right)$. Here they are denoted
ex
, ey
, and ez
(rather than
i
,j
,k
which cause problems in the
context of R).
fdx <- as.function(dx)
fdy <- as.function(dy)
fdz <- as.function(dz)
matrix(c(
fdx(ex),fdx(ey),fdx(ez),
fdy(ex),fdy(ey),fdy(ez),
fdz(ex),fdz(ey),fdz(ez)
),3,3)
## [,1] [,2] [,3]
## [1,] 1 0 0
## [2,] 0 1 0
## [3,] 0 0 1
Above we see that the matrix $\mathrm{d}x^i\frac{\partial}{\partial
x^j}$ is the identity, showing that ex
,
ey
, ez
are indeed conjugate to dx, dy, dz.
Following lines create exeyez.rda
, residing in the
data/
directory of the package.