Title: | Additive Partitions of Integers |
---|---|
Description: | Additive partitions of integers. Enumerates the partitions, unequal partitions, and restricted partitions of an integer; the three corresponding partition functions are also given. Set partitions and now compositions and riffle shuffles are included. |
Authors: | Robin K. S. Hankin [aut, cre] , Paul Egeler [ctb] |
Maintainer: | Robin K. S. Hankin <[email protected]> |
License: | GPL |
Version: | 1.10-8 |
Built: | 2024-12-26 04:43:59 UTC |
Source: | https://github.com/robinhankin/partitions |
Routines to enumerate all partitions of an integer; includes restricted and unequal partitions.
This package comprises eight functions: P()
, Q()
,
R()
, and S()
give the number of partitions, unequal
partitions, restricted partitions, and block partitions of an integer.
Functions parts()
, diffparts()
, restrictedparts()
,
and blockparts()
enumerate these partitions.
Function conjugate()
gives the conjugate of a partition and
function durfee()
gives the size of the Durfee square.
NB the emphasis in this package is terse, efficient C code.
This means that there is a minimum of argument checking. For example,
function conjugate()
assumes that the partition is in standard
form (i.e. nonincreasing); supplying a vector in nonstandard form will
result in garbage being returned silently. Note that a block partition
is not necessarily in standard form.
Robin K. S. Hankin
G. E. Andrews 1998 The Theory of Partitions, Cambridge University Press
M. Abramowitz and I. A. Stegun 1965. Handbook of Mathematical Functions, New York: Dover
G. H. Hardy and E. M. Wright 1985 An introduction to the theory of numbers, Clarendon Press: Oxford (fifth edition)
R. K. S. Hankin 2006. “Additive integer partitions in R”. Journal of Statistical Software, Volume 16, code snippet 1
R. K. S. Hankin 2007. “Urn sampling without replacement: enumerative combinatorics in R”. Journal of Statistical Software, Volume 17, code snippet 1
R. K. S. Hankin 2007. “Set partitions in R”. Journal of Statistical Software, Volume 23, code snippet 2
parts(5) diffparts(9) restrictedparts(15,10) P(10,give=TRUE) Q(10,give=TRUE) R(5,10)
parts(5) diffparts(9) restrictedparts(15,10) P(10,give=TRUE) Q(10,give=TRUE) R(5,10)
Coercion to and from partitions
## S3 method for class 'partition' as.matrix(x, ...) as.partition(x, ...)
## S3 method for class 'partition' as.matrix(x, ...) as.partition(x, ...)
x |
Object to be coerced |
... |
Further arguments |
Robin K. S. Hankin
as.matrix(parts(5))
as.matrix(parts(5))
Utilities to convert things to binary
tobin(n, len, check=TRUE) todec(bin) comptobin(comp, check=TRUE) bintocomp(bin, use.C=TRUE, check=TRUE)
tobin(n, len, check=TRUE) todec(bin) comptobin(comp, check=TRUE) bintocomp(bin, use.C=TRUE, check=TRUE)
n |
Integer, to be converted to binary by function |
len |
Length of the binary vector returned by function
|
bin |
Binary: a vector of |
comp |
A composition |
check |
Boolean, with default |
use.C |
Boolean, with default |
These functions are not really intended for the end user; they are
used in nextcomposition()
.
Function tobin()
converts integer n
to a binary
string of length len
Function todec()
converts a binary string to decimal,
so todec(tobin(n,i))==n
, provided i
is big enough
Function comptobin()
converts a composition to binary
Function bintocomp()
converts a binary string to a
composition
Robin K. S. Hankin
Wikipedia contributors, 2020. “Composition (combinatorics) — Wikipedia, The Free Encyclopedia”, https://en.wikipedia.org/w/index.php?title=Composition_(combinatorics)&oldid=944285378
tobin(10,5) todec(tobin(10,5)) comptobin(c(1,1,4)) bintocomp(c(1,1,0,0,1,1,1,1))
tobin(10,5) todec(tobin(10,5)) comptobin(c(1,1,4)) bintocomp(c(1,1,0,0,1,1,1,1))
Given a partition, coerce to a nice compact character format
condense(x, minval=1, col)
condense(x, minval=1, col)
x |
A partition or a matrix whose columns are partitions |
minval |
Minimum value to include in the printing, defaulting to 1 [meaning to ignore zero values]. Set to “0” for compositions |
col |
String specifying the collapse value with missing value
meaning to use the empty string if values are all single digit, and
a comma if not. Using “ |
Experimental: caveat emptor!
Robin K. S. Hankin
condense(parts(9)) condense(compositions(9,3),0) condense(diffparts(17),col="+")
condense(parts(9)) condense(compositions(9,3),0) condense(diffparts(17),col="+")
Given a partition, provide its conjugate or Durfee square
conjugate(x, sorted = TRUE) durfee(x, sorted = TRUE) durfee_sorted(x)
conjugate(x, sorted = TRUE) durfee(x, sorted = TRUE) durfee_sorted(x)
x |
Either a vector describing a partition or a matrix whose columns are partitions |
sorted |
A logical indicating whether the data is already in standard form. That is to say, are the data within each column sorted in decreasing order? |
Conjugation is described in Andrews, and (e.g.) Hardy and Wright.
The conjugate of a partition may be calculated by taking its Ferrers diagram and considering the partition defined by columns instead of rows. This may be visualised by flipping the Ferrers diagram about the leading diagonal.
Essentially, conjugate()
carries out R idiom
rev(cumsum(table(factor(a[a>0],levels=max(a):1))))
but is faster.
The “Durfee square” of a partition is defined on page 281 of
Hardy and Wright. It is the largest square of nodes contained in the
partition's Ferrers graph. Function durfee()
returns the
length of the side
of the Durfee square, which Andrews denotes
. It is equivalent to R idiom
function(a){sum(a>=1:length(a))}
but is faster.
Returns either a partition in standard form, or a matrix whose columns are partitions in standard form.
If argument x
is not non-increasing, you must use the
sorted = FALSE
flag. Otherwise, these functions will not work and will
silently return garbage. Caveat emptor! (output from blockparts()
is not necessarily non-increasing)
Robin K. S. Hankin
parts(5) conjugate(parts(5)) restrictedparts(6,4) conjugate(restrictedparts(6,4)) durfee(10:1) # A partition in nonstandard form --- use `sorted = FALSE` x <- parts(5)[sample(5),] durfee(x, sorted = FALSE) conjugate(x, sorted = FALSE) # Suppose one wanted partitions of 8 with no part larger than 3: conjugate(restrictedparts(8,3)) # (restrictedparts(8,3) splits 8 into at most 3 parts; # so no part of the conjugate partition is larger than 3).
parts(5) conjugate(parts(5)) restrictedparts(6,4) conjugate(restrictedparts(6,4)) durfee(10:1) # A partition in nonstandard form --- use `sorted = FALSE` x <- parts(5)[sample(5),] durfee(x, sorted = FALSE) conjugate(x, sorted = FALSE) # Suppose one wanted partitions of 8 with no part larger than 3: conjugate(restrictedparts(8,3)) # (restrictedparts(8,3) splits 8 into at most 3 parts; # so no part of the conjugate partition is larger than 3).
Given a partition, return the “next” one; or determine whether it is the last one.
nextpart(part, check=TRUE) islastpart(part) firstpart(n) nextdiffpart(part, check=TRUE) islastdiffpart(part) firstdiffpart(n) nextrestrictedpart(part, check=TRUE) islastrestrictedpart(part) firstrestrictedpart(n, m, include.zero=TRUE) nextblockpart(part, f, n=sum(part), include.fewer=FALSE, check=TRUE) islastblockpart(part, f, n=NULL , include.fewer=FALSE) firstblockpart( f, n=NULL , include.fewer=FALSE) nextcomposition(comp, restricted, include.zero=TRUE, check=TRUE) islastcomposition(comp, restricted, include.zero=TRUE) firstcomposition(n, m=NULL , include.zero=TRUE)
nextpart(part, check=TRUE) islastpart(part) firstpart(n) nextdiffpart(part, check=TRUE) islastdiffpart(part) firstdiffpart(n) nextrestrictedpart(part, check=TRUE) islastrestrictedpart(part) firstrestrictedpart(n, m, include.zero=TRUE) nextblockpart(part, f, n=sum(part), include.fewer=FALSE, check=TRUE) islastblockpart(part, f, n=NULL , include.fewer=FALSE) firstblockpart( f, n=NULL , include.fewer=FALSE) nextcomposition(comp, restricted, include.zero=TRUE, check=TRUE) islastcomposition(comp, restricted, include.zero=TRUE) firstcomposition(n, m=NULL , include.zero=TRUE)
part , comp
|
A partition or composition |
check |
Boolean, with default |
f , n , include.fewer , m , include.zero
|
Other arguments as per the vectorized version |
restricted |
In function |
These functions are intended to enumerate partitions one at a time, eliminating the need to store a huge matrix. This is useful for optimization over large domains and makes it possible to investigate larger partitions than is possible with the vectorized codes.
The idea is to use a first...()
function to generate the first
partition, then iterate using a next...()
function, stopping when
the islast...()
function returns TRUE
.
An example is given below, in which the “scrabble” problem is
solved; note the small size of the sample space. More examples are
given in the tests/aab.R
file.
Functions nextpart()
and nextdiffpart()
require a vector
of the right length: they require and return a partition padded with
zeros. Functions nextrestrictedpart()
and
nextblockpart()
work with partitions of the specified length.
Function nextcomposition()
truncates any zeros at the end of
the composition. This behaviour is inherited from the C
code.
In functions nextcomposition()
and firstcomposition()
,
argument include.zero
is ignored if restricted
is
FALSE
.
I must say that the performance of these functions is terrible;
they are much much slower than their vectorized equivalents. The
magnitude of the difference is much larger than I expected. Heigh
ho. Frankly you would better off working directly in C
.
Robin K. S. Hankin
# Do the optimization in scrabble vignette, one partition at a time: # (but with a smaller letter bag) scrabble <- c(a=9 , b=2 , c=2 , d=4 , e=12 , f=2 , g=3) f <- function(a){prod(choose(scrabble,a))/choose(sum(scrabble),7)} bestsofar <- 0 a <- firstblockpart(scrabble,7) while(!islastpart(a)){ jj <- f(a) if(jj>bestsofar){ bestsofar <- jj bestpart <- a } a <- nextblockpart(a,scrabble) }
# Do the optimization in scrabble vignette, one partition at a time: # (but with a smaller letter bag) scrabble <- c(a=9 , b=2 , c=2 , d=4 , e=12 , f=2 , g=3) f <- function(a){prod(choose(scrabble,a))/choose(sum(scrabble),7)} bestsofar <- 0 a <- firstblockpart(scrabble,7) while(!islastpart(a)){ jj <- f(a) if(jj>bestsofar){ bestsofar <- jj bestpart <- a } a <- nextblockpart(a,scrabble) }
Given an integer, P()
returns the number of additive
partitions, Q()
returns the number of unequal
partitions, and R()
returns the number of
restricted partitions. Function S()
returns the number of
block partitions.
P(n, give = FALSE) Q(n, give = FALSE) R(m, n, include.zero = FALSE) S(f, n = NULL, include.fewer = FALSE)
P(n, give = FALSE) Q(n, give = FALSE) R(m, n, include.zero = FALSE) S(f, n = NULL, include.fewer = FALSE)
n |
Integer whose partition number is desired. In function
|
m |
In function |
give |
Boolean, with default |
include.zero |
In |
include.fewer |
In function |
f |
In function |
Functions P()
and Q()
use Euler's
recursion formula. Function R()
enumerates the partitions
using Hindenburg's method (see Andrews) and counts them until the
recursion bottoms out.
Function S()
finds the coefficient of in the
generating function
, where
is the
length of
f
, using the polynom package.
All these functions return a double.
Functions P()
and Q()
use unsigned long long
integers, a type which is system-dependent. For me, P()
works
for equal to or less than 416, and
Q()
works for
less than or equal to 792. YMMV; none of the
methods test for overflow, so use with care!
Robin K. S. Hankin; S()
is due to an anonymous JSS referee
P(10,give=TRUE) Q(10,give=TRUE) R(10,20,include.zero=FALSE) R(10,20,include.zero=TRUE) S(1:4,5)
P(10,give=TRUE) Q(10,give=TRUE) R(10,20,include.zero=FALSE) R(10,20,include.zero=TRUE) S(1:4,5)
Given an integer, return a matrix whose columns enumerate various partitions.
Function parts()
returns the unrestricted partitions; function
diffparts()
returns the unequal partitions; function
restrictedparts()
returns the restricted partitions; function
blockparts()
returns the partitions subject to specified
maxima; and function compositions()
returns all compositions
of the argument.
parts(n) diffparts(n) restrictedparts(n, m, include.zero=TRUE, decreasing=TRUE) blockparts(f, n=NULL, include.fewer=FALSE) compositions(n, m=NULL, include.zero=TRUE) multiset(v,n=length(v)) mset(v) multinomial(v) allbinom(n,k)
parts(n) diffparts(n) restrictedparts(n, m, include.zero=TRUE, decreasing=TRUE) blockparts(f, n=NULL, include.fewer=FALSE) compositions(n, m=NULL, include.zero=TRUE) multiset(v,n=length(v)) mset(v) multinomial(v) allbinom(n,k)
n |
Integer to be partitioned. In function |
m |
In functions |
include.zero |
In functions |
include.fewer |
In function |
decreasing |
In |
f |
In function |
v |
An integer vector. In function |
k |
In function |
Function parts()
uses the algorithm in Andrews.
Function diffparts()
uses a very similar algorithm that I
have not seen elsewhere. These functions behave strangely if given
an argument of zero.
Function restrictedparts()
uses the algorithm in
Andrews, originally due to Hindenburg. For partitions into at most
m parts, the same Hindenburg's algorithm is used but with a
start vector of c(rep(0,m-1),n)
.
Functions parts()
and restrictedparts()
overlap in
functionality. Note, however, that they can return identical
partitions but in a different order: parts(6)
and
restrictedparts(6,6)
for example.
If \(m>n\), the partitions are padded with zeros.
Function blockparts()
enumerates the compositions of an
integer subject to a maximum criterion: given vector
\(y=(y_1,\ldots,y_n)\) all sets of
\(a=(a_1,\ldots,a_n)\) satisfying
\(\sum_{i=1}^pa_i=n\) subject to \(0\leq a_i\leq
y_i\) for all i are given in lexicographical
order. If argument y
includes zero elements, these are
treated consistently (ie a position with zero capacity).
If n
takes its default value of NULL
, then the
restriction \(\sum_{i=1}^pa_i=n\) is relaxed (so that
the numbers may sum to anything). Note that these solutions are not
necessarily in standard form, so functions durfee()
and
conjugate()
may fail.
With a single argument, compositions(n)
returns all
\(2^{n-1}\) ways of partitioning an integer; thus
4+1+1
is distinct from 1+4+1
or 1+1+4
. With
two arguments, compositions(n,m)
returns all nonnegative
solutions to \(x_1+\cdots+x_m=n\). This function
is different from all the others in the package in that it is
written in R; it is not clear that C would be any
faster.
Function multiset(v)
returns all ways of ordering
multiset v
. Optional argument n
specifies the size of
the subset to take (mset()
is a low-level helper function).
File README.Rmd
shows how to use multiset()
to
reproduce freealg::pepper()
, which gives related
functionality.
Function multinomial(v)
returns all ways of
partitioning a set into distinguishable boxes of capacities
v[1], v[2],...,v[n]
(a named vector gives more understandable
output). The number of columns is given by the multinomial
coefficient \({\sum v_i\choose
v_1\,v_2\,\ldots\,v_n}\).
Function allbinom(n,k)
is provided for convenience; it
enumerates the ways of choosing k objects from n
.
These vectorized functions return a matrix whose columns are the
partitions. If this matrix is too large, consider enumerating the
partitions individually using the functionality documented in
nextpart.Rd
.
One commonly encountered idiom is blockparts(rep(n,n),n)
, which
is equivalent to compositions(n,n)
[Sloane's A001700
].
If you have a minimum number of balls in each block, a construction like
x <- c(1,1,2,1) # min y <- c(2,2,3,4) # max sweep(blockparts(y-x,sum(y)-sum(x),TRUE),1,x,"+") #> #> [1,] 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 #> [2,] 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 #> [3,] 2 2 2 2 3 3 3 3 2 2 2 2 3 3 3 3 2 2 2 2 3 3 3 3 2 2 2 2 3 3 3 3 #> [4,] 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4
can be helpful (that is, subtract off the minimum number of balls and add them back again at the end).
blockparts(c(4,3,3,2),5) # Knuth's example, pre-fascicle 3a, p16 multiset(c(1,2,2,3)) # also Knuth
Robin K. S. Hankin
G. E. Andrews. “The theory of partitions”, Cambridge University Press, 1998
R. K. S. Hankin 2006. “Additive integer partitions in R”. Journal of Statistical Software, Volume 16, code snippet 1
R. K. S. Hankin 2007. “Urn sampling without replacement: enumerative combinatorics in R”. Journal of Statistical Software, Volume 17, code snippet 1
R. K. S. Hankin 2007. “Set partitions in R”. Journal of Statistical Software, Volume 23, code snippet 2
N. J. A. Sloane, 2008, The On-Line Encyclopedia of Integer Sequences. Sequence A001700
D. Knuth, 2004. The art of computer programming, pre-fascicle 2B “Generating all permutations”
parts(7) ##: [1,] 7 6 5 5 4 4 4 3 3 3 3 2 2 2 1 ##: [2,] 0 1 2 1 3 2 1 3 2 2 1 2 2 1 1 ##: [3,] 0 0 0 1 0 1 1 1 2 1 1 2 1 1 1 ##: [4,] 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 ##: [5,] 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 ##: [6,] 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 ##: [7,] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 P(7) ##: [1] 15 diffparts(9) ##: [1,] 9 8 7 6 6 5 5 4 ##: [2,] 0 1 2 3 2 4 3 3 ##: [3,] 0 0 0 0 1 0 1 2 Q(9) ##: [1] 8 restrictedparts(9, 4) ##: [1,] 9 8 7 6 5 7 6 5 4 5 4 3 6 5 4 4 3 3 ##: [2,] 0 1 2 3 4 1 2 3 4 2 3 3 1 2 3 2 3 2 ##: [3,] 0 0 0 0 0 1 1 1 1 2 2 3 1 1 1 2 2 2 ##: [4,] 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 2 R(4, 9, include.zero = TRUE) ##: [1] 18 blockparts(1:4, 5) ##: [1,] 1 1 0 1 1 0 1 0 1 1 0 1 0 0 1 0 1 0 0 1 0 0 ##: [2,] 2 1 2 2 1 2 0 1 2 1 2 0 1 0 1 2 0 1 0 0 1 0 ##: [3,] 2 3 3 1 2 2 3 3 0 1 1 2 2 3 0 0 1 1 2 0 0 1 ##: [4,] 0 0 0 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 4 4 4 S(1:4, 5) ##: [1] 22 compositions(5, 3) ##: [1,] 5 4 3 2 1 0 4 3 2 1 0 3 2 1 0 2 1 0 1 0 0 ##: [2,] 0 1 2 3 4 5 0 1 2 3 4 0 1 2 3 0 1 2 0 1 0 ##: [3,] 0 0 0 0 0 0 1 1 1 1 1 2 2 2 2 3 3 3 4 4 5 S(rep(5, 3), 5) ##: [1] 21 setparts(4) ##: [1,] 1 1 1 1 2 1 1 1 1 1 1 2 2 2 1 ##: [2,] 1 1 1 2 1 2 1 2 2 1 2 1 1 3 2 ##: [3,] 1 2 1 1 1 2 2 1 3 2 1 3 1 1 3 ##: [4,] 1 1 2 1 1 1 2 2 1 3 3 1 3 1 4 setparts(c(1, 2, 2)) ##: [1,] 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 ##: [2,] 2 2 3 1 1 1 2 2 3 2 2 3 1 1 1 ##: [3,] 3 2 2 3 2 2 1 1 1 3 2 2 2 1 2 ##: [4,] 2 3 2 2 3 2 3 2 2 1 1 1 2 2 1 ##: [5,] 1 1 1 2 2 3 2 3 2 2 3 2 1 2 2 restrictedsetparts(c(a = 2, b = 1, c = 1)) ##: a 1 1 1 2 2 3 ##: a 4 2 3 4 3 4 ##: b 2 3 2 1 1 1 ##: c 3 4 4 3 4 2 multinomial(c(a = 2, b = 1, c = 1)) ##: a 1 1 1 1 1 1 2 2 3 2 2 3 ##: a 2 2 3 4 3 4 3 4 4 3 4 4 ##: b 3 4 2 2 4 3 1 1 1 4 3 2 ##: c 4 3 4 3 2 2 4 3 2 1 1 1 multiset(c(9, 5, 5, 5, 6)) ##: [1,] 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 9 9 9 9 ##: [2,] 5 5 5 5 5 5 6 6 6 9 9 9 5 5 5 9 5 5 5 6 ##: [3,] 5 5 6 6 9 9 5 5 9 5 5 6 5 5 9 5 5 5 6 5 ##: [4,] 6 9 5 9 5 6 5 9 5 5 6 5 5 9 5 5 5 6 5 5 ##: [5,] 9 6 9 5 6 5 9 5 5 6 5 5 9 5 5 5 6 5 5 5 multiset(c(9, 5, 5, 5, 6), 3) ##: [1,] 5 5 5 6 5 5 9 5 5 6 6 9 9 ##: [2,] 5 5 6 5 5 9 5 6 9 5 9 5 6 ##: [3,] 5 6 5 5 9 5 5 9 6 9 5 6 5
parts(7) ##: [1,] 7 6 5 5 4 4 4 3 3 3 3 2 2 2 1 ##: [2,] 0 1 2 1 3 2 1 3 2 2 1 2 2 1 1 ##: [3,] 0 0 0 1 0 1 1 1 2 1 1 2 1 1 1 ##: [4,] 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 ##: [5,] 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 ##: [6,] 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 ##: [7,] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 P(7) ##: [1] 15 diffparts(9) ##: [1,] 9 8 7 6 6 5 5 4 ##: [2,] 0 1 2 3 2 4 3 3 ##: [3,] 0 0 0 0 1 0 1 2 Q(9) ##: [1] 8 restrictedparts(9, 4) ##: [1,] 9 8 7 6 5 7 6 5 4 5 4 3 6 5 4 4 3 3 ##: [2,] 0 1 2 3 4 1 2 3 4 2 3 3 1 2 3 2 3 2 ##: [3,] 0 0 0 0 0 1 1 1 1 2 2 3 1 1 1 2 2 2 ##: [4,] 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 2 R(4, 9, include.zero = TRUE) ##: [1] 18 blockparts(1:4, 5) ##: [1,] 1 1 0 1 1 0 1 0 1 1 0 1 0 0 1 0 1 0 0 1 0 0 ##: [2,] 2 1 2 2 1 2 0 1 2 1 2 0 1 0 1 2 0 1 0 0 1 0 ##: [3,] 2 3 3 1 2 2 3 3 0 1 1 2 2 3 0 0 1 1 2 0 0 1 ##: [4,] 0 0 0 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 4 4 4 S(1:4, 5) ##: [1] 22 compositions(5, 3) ##: [1,] 5 4 3 2 1 0 4 3 2 1 0 3 2 1 0 2 1 0 1 0 0 ##: [2,] 0 1 2 3 4 5 0 1 2 3 4 0 1 2 3 0 1 2 0 1 0 ##: [3,] 0 0 0 0 0 0 1 1 1 1 1 2 2 2 2 3 3 3 4 4 5 S(rep(5, 3), 5) ##: [1] 21 setparts(4) ##: [1,] 1 1 1 1 2 1 1 1 1 1 1 2 2 2 1 ##: [2,] 1 1 1 2 1 2 1 2 2 1 2 1 1 3 2 ##: [3,] 1 2 1 1 1 2 2 1 3 2 1 3 1 1 3 ##: [4,] 1 1 2 1 1 1 2 2 1 3 3 1 3 1 4 setparts(c(1, 2, 2)) ##: [1,] 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 ##: [2,] 2 2 3 1 1 1 2 2 3 2 2 3 1 1 1 ##: [3,] 3 2 2 3 2 2 1 1 1 3 2 2 2 1 2 ##: [4,] 2 3 2 2 3 2 3 2 2 1 1 1 2 2 1 ##: [5,] 1 1 1 2 2 3 2 3 2 2 3 2 1 2 2 restrictedsetparts(c(a = 2, b = 1, c = 1)) ##: a 1 1 1 2 2 3 ##: a 4 2 3 4 3 4 ##: b 2 3 2 1 1 1 ##: c 3 4 4 3 4 2 multinomial(c(a = 2, b = 1, c = 1)) ##: a 1 1 1 1 1 1 2 2 3 2 2 3 ##: a 2 2 3 4 3 4 3 4 4 3 4 4 ##: b 3 4 2 2 4 3 1 1 1 4 3 2 ##: c 4 3 4 3 2 2 4 3 2 1 1 1 multiset(c(9, 5, 5, 5, 6)) ##: [1,] 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 9 9 9 9 ##: [2,] 5 5 5 5 5 5 6 6 6 9 9 9 5 5 5 9 5 5 5 6 ##: [3,] 5 5 6 6 9 9 5 5 9 5 5 6 5 5 9 5 5 5 6 5 ##: [4,] 6 9 5 9 5 6 5 9 5 5 6 5 5 9 5 5 5 6 5 5 ##: [5,] 9 6 9 5 6 5 9 5 5 6 5 5 9 5 5 5 6 5 5 5 multiset(c(9, 5, 5, 5, 6), 3) ##: [1,] 5 5 5 6 5 5 9 5 5 6 6 9 9 ##: [2,] 5 5 6 5 5 9 5 6 9 5 9 5 6 ##: [3,] 5 6 5 5 9 5 5 9 6 9 5 6 5
Given an integer n
, return a matrix whose columns enumerate various
permutations of 1:n
.
Function perms()
returns all permutations in lexicographic
order; function plainperms()
returns all permutations by
repeatedly exchanging adjacent pairs.
perms(n) plainperms(n)
perms(n) plainperms(n)
n |
Integer argument; permutations of |
Comments in the C code; algorithm lifted from ‘fasc2b.pdf’.
D. E. Knuth; C and R transliteration by Robin K. S. Hankin
D. E. Knuth 2004. “The art of computer programming,
pre-fascicle 2B. A draft of section 7.2.1.2: Generating all
permutations”.
https://www-cs-faculty.stanford.edu/~knuth/taocp.html
perms(4) summary(perms(5)) # Knuth's Figure 18: matplot(t(apply(plainperms(4),2,order)), type='l', lty=1, lwd=5, asp=1, frame=FALSE, axes=FALSE, ylab="", col=gray((1:5)/5))
perms(4) summary(perms(5)) # Knuth's Figure 18: matplot(t(apply(plainperms(4),2,order)), type='l', lty=1, lwd=5, asp=1, frame=FALSE, axes=FALSE, ylab="", col=gray((1:5)/5))
A print method for partition objects, summary partition objects, and equivalence classes. Includes various configurable options
## S3 method for class 'partition' print(x, mat = getOption("matrixlike"), h = getOption("horiz"), ...) ## S3 method for class 'summary.partition' print(x, ...) ## S3 method for class 'equivalence' print(x, sep = getOption("separator"), ...)
## S3 method for class 'partition' print(x, mat = getOption("matrixlike"), h = getOption("horiz"), ...) ## S3 method for class 'summary.partition' print(x, ...) ## S3 method for class 'equivalence' print(x, sep = getOption("separator"), ...)
x |
Object to be printed: an object of class either
|
mat |
Boolean, with |
h |
Boolean governing the orientation of the printed matrix, with
|
sep |
Character vector, with special value of |
... |
Further arguments provided for compatibility |
The print method is sensitive to the value of option matrixlike
which by default sets column names to a space for more compact
printing. Set to TRUE
to print a partition like a matrix.
Option horiz
specifies whether or not to print a partition
horizontally.
The print method for objects of class equivalence
gives things
like
listParts(3:1) [[1]] [1] {1,2,6}{4,5}{3} [[2]] [1] {1,2,6}{3,4}{5} ... [[59]] [1] {4,5,6}{1,2}{3} [[60]] [1] {4,5,6}{2,3}{1}
The curly brackets are to remind you that function listParts()
gives set partitions, not cycle representation of a permutation
as per the permutations package.
Robin K. S. Hankin
print(parts(5)) summary(parts(7)) listParts(3) options(separator="") listParts(5)
print(parts(5)) summary(parts(7)) listParts(3) options(separator="") listParts(5)
Enumeration of riffle shuffles
genrif(v) riffle(p,q=p)
genrif(v) riffle(p,q=p)
p , q , v
|
In function |
A riffle shuffle is a permutation of integers \(1,2,\ldots,n\) containing one or two rising sequences.
A generalized riffle shuffle, or \(r\)-riffle shuffle, contains at most \(r\) rising sequences. This is not implemented in the package (earlier versions included a buggy version; the difficulty is ensuring that sequences do not appear more than once).
riffle(p,q)
returns all riffle shuffles with rising
sequences of 1:p
and (p+1):q
genrif(v)
returns all riffle shuffles with rising
sequences having lengths the entries of v
, the deck being
numbered consecutively
Returns a matrix of class partition
with columns being
riffle shuffles
When we say “contains \(r\) rising sequences” we generally mean “contains at most \(r\) rising sequences”
Robin K. S. Hankin
riffle(3, 4) ##: [1,] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ##: [2,] 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 1 1 1 1 1 1 1 1 1 1 5 5 5 5 5 5 5 5 5 5 ##: [3,] 3 4 4 4 4 2 2 2 2 5 5 5 5 5 5 2 2 2 2 5 5 5 5 5 5 1 1 1 1 1 1 6 6 6 6 ##: [4,] 4 3 5 5 5 3 5 5 5 2 2 2 6 6 6 3 5 5 5 2 2 2 6 6 6 2 2 2 6 6 6 1 1 1 7 ##: [5,] 5 5 3 6 6 5 3 6 6 3 6 6 2 2 7 5 3 6 6 3 6 6 2 2 7 3 6 6 2 2 7 2 2 7 1 ##: [6,] 6 6 6 3 7 6 6 3 7 6 3 7 3 7 2 6 6 3 7 6 3 7 3 7 2 6 3 7 3 7 2 3 7 2 2 ##: [7,] 7 7 7 7 3 7 7 7 3 7 7 3 7 3 3 7 7 7 3 7 7 3 7 3 3 7 7 3 7 3 3 7 3 3 3 genrif(1:3) ##: [1,] 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 ##: [2,] 2 2 2 2 4 4 4 4 4 4 1 1 1 1 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 1 1 1 1 1 1 2 ##: [3,] 3 4 4 4 2 2 2 5 5 5 3 4 4 4 1 4 4 4 1 1 1 3 3 3 5 5 5 5 5 5 2 2 2 5 5 5 1 ##: [4,] 4 3 5 5 3 5 5 2 2 6 4 3 5 5 4 1 5 5 3 5 5 1 5 5 1 1 3 3 6 6 3 5 5 2 2 6 3 ##: [5,] 5 5 3 6 5 3 6 3 6 2 5 5 3 6 5 5 1 6 5 3 6 5 1 6 3 6 1 6 1 3 5 3 6 3 6 2 5 ##: [6,] 6 6 6 3 6 6 3 6 3 3 6 6 6 3 6 6 6 1 6 6 3 6 6 1 6 3 6 1 3 1 6 6 3 6 3 3 6 ##: [1,] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ##: [2,] 2 2 2 2 2 2 2 2 2 2 2 5 5 5 5 5 5 5 5 5 5 5 5 ##: [3,] 1 1 3 3 3 5 5 5 5 5 5 1 1 1 2 2 2 2 2 2 6 6 6 ##: [4,] 5 5 1 5 5 1 1 3 3 6 6 2 2 6 1 1 3 3 6 6 1 2 2 ##: [5,] 3 6 5 1 6 3 6 1 6 1 3 3 6 2 3 6 1 6 1 3 2 1 3 ##: [6,] 6 3 6 6 1 6 3 6 1 3 1 6 3 3 6 3 6 1 3 1 3 3 1
riffle(3, 4) ##: [1,] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ##: [2,] 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 1 1 1 1 1 1 1 1 1 1 5 5 5 5 5 5 5 5 5 5 ##: [3,] 3 4 4 4 4 2 2 2 2 5 5 5 5 5 5 2 2 2 2 5 5 5 5 5 5 1 1 1 1 1 1 6 6 6 6 ##: [4,] 4 3 5 5 5 3 5 5 5 2 2 2 6 6 6 3 5 5 5 2 2 2 6 6 6 2 2 2 6 6 6 1 1 1 7 ##: [5,] 5 5 3 6 6 5 3 6 6 3 6 6 2 2 7 5 3 6 6 3 6 6 2 2 7 3 6 6 2 2 7 2 2 7 1 ##: [6,] 6 6 6 3 7 6 6 3 7 6 3 7 3 7 2 6 6 3 7 6 3 7 3 7 2 6 3 7 3 7 2 3 7 2 2 ##: [7,] 7 7 7 7 3 7 7 7 3 7 7 3 7 3 3 7 7 7 3 7 7 3 7 3 3 7 7 3 7 3 3 7 3 3 3 genrif(1:3) ##: [1,] 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 ##: [2,] 2 2 2 2 4 4 4 4 4 4 1 1 1 1 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 1 1 1 1 1 1 2 ##: [3,] 3 4 4 4 2 2 2 5 5 5 3 4 4 4 1 4 4 4 1 1 1 3 3 3 5 5 5 5 5 5 2 2 2 5 5 5 1 ##: [4,] 4 3 5 5 3 5 5 2 2 6 4 3 5 5 4 1 5 5 3 5 5 1 5 5 1 1 3 3 6 6 3 5 5 2 2 6 3 ##: [5,] 5 5 3 6 5 3 6 3 6 2 5 5 3 6 5 5 1 6 5 3 6 5 1 6 3 6 1 6 1 3 5 3 6 3 6 2 5 ##: [6,] 6 6 6 3 6 6 3 6 3 3 6 6 6 3 6 6 6 1 6 6 3 6 6 1 6 3 6 1 3 1 6 6 3 6 3 3 6 ##: [1,] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ##: [2,] 2 2 2 2 2 2 2 2 2 2 2 5 5 5 5 5 5 5 5 5 5 5 5 ##: [3,] 1 1 3 3 3 5 5 5 5 5 5 1 1 1 2 2 2 2 2 2 6 6 6 ##: [4,] 5 5 1 5 5 1 1 3 3 6 6 2 2 6 1 1 3 3 6 6 1 2 2 ##: [5,] 3 6 5 1 6 3 6 1 6 1 3 3 6 2 3 6 1 6 1 3 2 1 3 ##: [6,] 6 3 6 6 1 6 3 6 1 3 1 6 3 3 6 3 6 1 3 1 3 3 1
Enumeration of set partitions
setparts(x) restrictedsetparts(vec) restrictedsetparts2(vec) listParts(x,do.set=FALSE) vec_to_set(vec) vec_to_eq(vec)
setparts(x) restrictedsetparts(vec) restrictedsetparts2(vec) listParts(x,do.set=FALSE) vec_to_set(vec) vec_to_eq(vec)
x |
If a vector of length 1, the size of the set to be
partitioned. If a vector of length greater than 1, return all
equivalence relations with equivalence classes with sizes of the
elements of |
do.set |
Boolean, with |
vec |
An integer vector representing a set partition. In
|
A partition of a set \(S=\left\lbrace 1,\ldots,n\right\rbrace\) is a family of sets \(T_1,\ldots,T_k\) satisfying
\(i\neq j\longrightarrow T_i\cap T_j=\emptyset\)
\(\cup_{i=1}^kT_k=S\)
\(T_i\neq\emptyset\) for \(i=1,\ldots, k\)
The induced equivalence relation has \(i\sim j\) if and
only if i and j belong to the same partition. Equivalence
classes of \(S=\left\lbrace 1,\ldots,n\right\rbrace\)
may be listed using listParts()
. There are exactly fifteen ways
to partition a set of four elements:
(1234) |
(123)(4), (124)(3), (134)(2), (234)(1) |
(12)(34), (13)(24), (14)(23) |
(12)(3)(4), (13)(2)(4), (23)(1)(4), (24)(1)(3), (34)(1)(2) |
(1)(2)(3)(4) |
Note that (12)(3)(4) is the same partition as, for example, (3)(4)(21) as the equivalence relation is the same.
Consider partitions of a set S of five elements (named 1,2,3,4,5) with sizes 2,2,1. These may be enumerated as follows:
> u <- c(2,2,1) > setparts(u) [1,] 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 [2,] 2 2 3 1 1 1 2 2 3 2 2 3 1 1 1 [3,] 3 2 2 3 2 2 1 1 1 3 2 2 2 1 2 [4,] 2 3 2 2 3 2 3 2 2 1 1 1 2 2 1 [5,] 1 1 1 2 2 3 2 3 2 2 3 2 1 2 2
See how each column has two 1s, two 2s and one 3. This is because the first and second classes have size two, and the third has size one.
The first partition, x=c(1,2,3,2,1)
, is read “class 1
contains elements 1 and 5 (because the first and fifth element of
x
is 1); class 2 contains elements 2 and 4 (because the second
and fourth element of x
is 2); and class 3 contains element 3
(because the third element of x
is 3)”. Formally, class
i
has elements which(x==u[i])
.
You can change the print method by setting, eg,
options(separator="")
.
Functions vec_to_set()
and vec_to_eq()
are low-level
helper functions. These take an integer vector, typically a column of a
matrix produced by setparts()
and return their set
representation.
Function restrictedsetparts()
provides a matrix-based alternative
to listParts()
. Note that the vector must be in
non-increasing order:
restrictedsetparts(c(a=2,b=2,c=1)) a 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 a 5 5 5 2 2 2 3 3 3 4 4 4 5 3 4 b 2 2 3 4 3 3 2 2 4 2 2 3 3 4 3 b 4 3 4 5 5 4 5 4 5 5 3 5 4 5 5 c 3 4 2 3 4 5 4 5 2 3 5 2 1 1 1
Above, we set partitions of \(\left\lbrace
1,2,3,4,5\right\rbrace\) into equivalence classes of sizes 2,2,1.
The first column, for example, corresponds to
\(\left\lbrace1,5\right\rbrace\left\lbrace2,4\right\rbrace\left\lbrace3\right\rbrace\).
Note the absence of
\(\left\lbrace5,1\right\rbrace\left\lbrace2,4\right\rbrace\left\lbrace3\right\rbrace\).
and
\(\left\lbrace2,4\right\rbrace\left\lbrace1,5\right\rbrace\left\lbrace3\right\rbrace\)
which would correspond to the same (set) partition; compare
multinomial()
. Observe that the individual subsets are not
necessarily sorted.
Function restrictedsetparts2()
uses an alternative implementation
which might be faster under some circumstances.
Returns a matrix each of whose columns show a set partition; an object
of class "partition"
. Type ?print.partition
to see how
to change the options for printing.
The clue package by Kurt Hornik contains functionality for
partitions (specifically cl_meet()
and cl_join()
) which
might be useful. Option do.set
invokes functionality from the
sets package by Meyer et al.
Note carefully that setparts(c(2,1,1))
does not
enumerate the ways of placing four numbered balls in three boxes of
capacities 2,1,1. This is because there are two boxes of capacity 1,
and swapping the balls between these boxes gives the same set
partition (because sets are unordered). To do this, use
multinomial(c(a=2,b=1,c=1))
. See the setparts
vignette
for more details.
Luke G. West (C++) and Robin K. S. Hankin (R);
listParts()
provided by Diana Tichy
R. K. S. Hankin 2006. Additive integer partitions in R. Journal of Statistical Software, Code Snippets 16(1)
R. K. S. Hankin 2007. Set partitions in R. Journal of Statistical Software, Volume 23, code snippet 2
Kurt Hornik (2017). clue: Cluster ensembles. R package version 0.3-53. https://CRAN.R-project.org/package=clue
Kurt Hornik (2005). A CLUE for Cluster Ensembles. Journal of Statistical Software 14/12. doi:10.18637/jss.v014.i12
setparts(4) # all partitions of a set of 4 elements setparts(c(3,3,2)) # all partitions of a set of 8 elements # into sets of sizes 3,3,2. listParts(c(2,2,1)) # all 15 ways of defining subsets of # {1,2,3,4,5} with sizes 2,2,1 jj <- restrictedparts(5,3) setparts(jj) # partitions of a set of 5 elements into # at most 3 sets listParts(jj) # The induced equivalence classes restrictedsetparts(c(a=2,b=2,c=1)) # alternative to listParts() jj <- restrictedparts(6,3,TRUE) setparts(jj) # partitions of a set of 6 elements into ncol(setparts(jj)) # _exactly_ 3 sets; cf StirlingS2[6,3]==90 setparts(conjugate(jj)) # partitions of a set of 5 elements into # sets not exceeding 3 elements setparts(diffparts(5)) # partitions of a set of 5 elements into # sets of different sizes
setparts(4) # all partitions of a set of 4 elements setparts(c(3,3,2)) # all partitions of a set of 8 elements # into sets of sizes 3,3,2. listParts(c(2,2,1)) # all 15 ways of defining subsets of # {1,2,3,4,5} with sizes 2,2,1 jj <- restrictedparts(5,3) setparts(jj) # partitions of a set of 5 elements into # at most 3 sets listParts(jj) # The induced equivalence classes restrictedsetparts(c(a=2,b=2,c=1)) # alternative to listParts() jj <- restrictedparts(6,3,TRUE) setparts(jj) # partitions of a set of 6 elements into ncol(setparts(jj)) # _exactly_ 3 sets; cf StirlingS2[6,3]==90 setparts(conjugate(jj)) # partitions of a set of 5 elements into # sets not exceeding 3 elements setparts(diffparts(5)) # partitions of a set of 5 elements into # sets of different sizes
Provides a summary of an object of class partition
: usually the
first and last few partitions (columns)
## S3 method for class 'partition' summary(object, ...)
## S3 method for class 'partition' summary(object, ...)
object |
Partition |
... |
Further arguments; see details section below |
The ellipsis arguments are used to pass how many columns at the start and the end of the matrix are selected; this defaults to 10.
The function is designed to behave as expected: if there is an
argument named “n
”, then this is used. If there is no
such argument, the first one is used.
A summary object is a list, comprising three elements:
shortened |
Boolean, with |
n |
Number of columns to return at the start and the end of the matrix |
out |
Matrix returned: just the first and last |
Robin K. S. Hankin
summary(parts(7)) summary(parts(11),3)
summary(parts(7)) summary(parts(11),3)