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Abstract

This vignette is based on Hankin (2006) and corrects an algebraic error therein.
This vignette introduces the onion package of R routines, for manipulation of quater-

nions and octonions. A simple application of the quaternions in use is given, using the
package.
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1. Preface
An algebra is a vector space V over a field (here the real numbers) in
which the vectors may be multiplied. In addition to the usual vector
space axioms, one requires, for any λ, µ ∈ R and x, y, z ∈ V :

• x(λy + µz) = λxy + µxz

• (λy + µz)x = λyx + µzx

where multiplication is denoted by juxtaposition; note the absence of
associativity. A division algebra is a nontrivial algebra in which division
is possible: for any a ∈ V and any nonzero b ∈ V , there exists precisely
one element x with a = bx and precisely one element y with a = yb. A
normed division algebra is a division algebra with a norm ||·|| satisfying ||xy|| = ||x|| ||y||.
There are precisely four normed division algebras: the reals themselves (R), the complex num-
bers (C), the quaternions (H) and the octonions (O); the generic term is “onion”, although
the term includes other algebras such as the sedenions.
The R computer language (R Development Core Team 2008) is well-equipped to deal with the
first two: here, I introduce the onion package that provides some functionality for the quater-
nions and the octonions, and illustrate these interesting algebras using numerical examples.

2. Introduction
Historically, the complex numbers arose from a number of independent lines of inquiry and
our current understanding of them (viz z = x + iy; the Argand plane) developed over the
eighteenth and nineteenth centuries.
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Hamilton was one of many mathematicians to attempt to extend the complex numbers to a
third dimension and discover what would in our terminology be a three dimensional normed
division algebra. We now know that no such thing exists: division algebras all have dimen-
sion 2n for n some non-negative integer.
Hamilton came upon the multiplicative structure of the quaternions in a now-famous flash of
inspiration on 16th October 1843: the quaternions are obtained by adding the elements i, j,
and k to the real numbers and requiring that

i2 = j2 = k2 = ijk = −1. (1)

A general quaternion is thus written a+bi+cj+dk with a, b, c, d being real numbers; complex
arithmetic is recovered if c = d = 0. Hamilton’s relations above, together with distributivity
and associativity, yield the full multiplication table and the quaternions are the unique four
dimensional normed division algebra.
However, Hamilton’s scheme was controversial as his multiplication was noncommutative: a
shocking suggestion at the time. Today we recognize many more noncommutative operations
(such as matrix multiplication), but even Hamilton had difficulty convincing his contempo-
raries that such operations were consistent, let alone worth studying.

2.1. The octonions

The fourth and final normed division algebra is that of the octonions. These were discovered
around 1844 and are an eight-dimensional algebra over the reals. The full multiplication table
is given by Baez (2001).

3. Package onion in use
A good place to start is function rquat(), which returns a quaternionic vector of a specified
length, whose elements are random small integers:

> x <- rquat(5)
> names(x) <- letters[1:5]
> print(x)

a b c d e
Re -1.42 0.40 0.15 0.50 0.29
i -2.15 0.59 1.81 1.23 -0.42
j -0.18 0.11 -0.27 -1.09 0.18
k 0.63 -0.60 0.50 -0.37 -0.25

This quaternionic vector, of length 5, is of the form of a four-row matrix. The rownames are
the standard basis for quaternions, and their entries may be manipulated as expected; for
example, we may set component k to be component j plus 10:

> k(x) <- j(x)+10
> x
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a b c d e
Re -1.42 0.40 0.15 0.5 0.29
i -2.15 0.59 1.81 1.2 -0.42
j -0.18 0.11 -0.27 -1.1 0.18
k 9.82 10.11 9.73 8.9 10.18

Quaternionic vectors behave largely as one might expect. For example, we may concatenate
a with a basis quaternion (the four bases are represented in the package by H1, Hi, Hj, and
Hk) and multiply the result by the first element:

> c(x,Hk)*x[1]

a b c d e
Re -98.98 -98.5 -91.9 -86 -101.2 -9.82
i 6.08 1.2 -3.7 -12 3.7 0.18
j 0.52 -27.7 -38.3 -30 -18.1 -2.15
k -27.80 -10.2 -13.2 -10 -11.1 -1.42

And indeed we may explicitly verify that quaternionic multiplication is not commutative using
the commutator() function, returning xy − yx:

> y <- rquat(5)
> commutator(x,y)

a b c d e
Re 0.0 0.0 0.0 0.00 0.0
i -16.2 -21.4 -5.8 -1.23 -26.7
j -31.3 -47.0 8.2 4.44 -10.8
k -4.1 1.8 1.3 0.71 -0.9

It is possible to verify that quaternionic multiplication is associative using function associator(x,y,z)
which returns (xy)z − x(yz) and is thus identically zero for associative operators:

> associator(x,y,rquat(5))

a b c d e
Re 2.2e-16 2.7e-15 -8.9e-16 4.4e-16 -3.6e-15
i 0.0e+00 -7.1e-15 0.0e+00 1.8e-15 3.6e-15
j 7.1e-15 3.6e-15 8.9e-16 0.0e+00 -1.8e-15
k 0.0e+00 -7.1e-15 0.0e+00 -2.2e-16 1.8e-15

Compare the octonions, which are not associative:

> associator(roct(3),roct(3),roct(3))
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[1] [2] [3]
Re 1.8e-15 4.4e-16 1.3e-15
i 1.3e+00 2.8e+00 -5.6e-01
j 9.5e+00 -4.3e+00 -2.6e+00
k -4.1e+00 -1.2e+00 -5.4e+00
l -2.0e+01 9.7e+00 5.6e-01
il 2.8e+00 2.7e+00 -1.6e+01
jl 1.8e+00 2.1e+00 -1.6e+01
kl -1.2e+01 4.2e+00 7.9e+00

Many transcendental functions operate on onions, via a reasonably straightforward general-
ization of the complex case. Consider the square root, defined as exp(log(x)/2). That this
obeys similar rules to the usual square root may be demonstrated for octonions by calculating√

x
√

x − x, and showing that its modulus is small:

> x <- roct(3)
> Mod(sqrt(x)*sqrt(x)-x)

[1] 3.8e-16 2.5e-16 7.0e-16

showing acceptable accuracy in this context. However, many identities that are true for
the real or complex case fail for quaternions or octonions; for example, although log(x2) =
2 log(x), it is not generally the case that log(xy) = log(x) + log(y), as we may verify numeri-
cally:

> x <- rquat(3)
> y <- rquat(3)
> Mod(log(x*x)-2*log(x))

[1] 2.4e-16 4.5e-16 6.3e+00

> Mod(log(x*y)-log(x)-log(y))

[1] 0.28 0.57 2.84

3.1. Practical applications
I now show the quaternions in use: they can be used to rotate an object in 3D space in an
elegant and natural way. If we wish to rotate vector v, considered to be triple of real numbers,
we first identify its 3 components with the imaginary part of a quaternion with zero real part
(ie v = 0 + v1i + v2j + v3k). Then the transformation defined by

v −→ v′ = zvz−1

where z ∈ H, is a rotation1. Note that the noncommutativity of the quaternions means that
the mapping is not necessarily the identity. This scheme may be used to produce figure 1.

1The real part of v′ is again zero and thus may be interpreted as a three-vector. It is straightforward to
prove that v · w = v′ · w′. In R idiom, one would numerically verify these identities by evaluating d=(z*v/z)
%.% (z*w/z) - v %.% w (where v,w,z are quaternions) and observing that Mod(d) is small.
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Figure 1: The Stanford Bunny (Turk 2005) in various orientations, plotted using p3d(); in
the package, 3D rotation is carried out by function rotate(). Depth cue is via progressive
greying out of points further from the eye, as though viewed through a mist
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Translating between quaternionic rotation and (say) the equivalent orthogonal matrix is
straightforward.

4. Conclusions
Quaternions and octonions are interesting and instructive examples of normed division alge-
bras. Quaternions are a natural and efficient representation of three dimensional rotations
and this paper includes a brief illustration of their use in this context.
Octonions’ applicability to physics is currently unclear, but a steady trickle of papers has
appeared in which the octonions are shown to be related to spinor geometry and quantum
mechanics (see Baez (2001) and references therein). Reading the literature, one cannot help
feeling that octonions will eventually reveal some deep physical truth. When this happens,
the onion package ensures that R will be ready to play its part.
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