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Abstract

A multivariate generalization of the emulator technique described by Hankin (2005)
is presented in which random multivariate functions may be assessed. In the standard
univariate case (Oakley 1999), a Gaussian process, a finite number of observations is made;
here, observations of different types are considered. The technique has the property that
marginal analysis (that is, considering only a single observation type) reduces exactly to
the univariate theory.

The associated software is used to analyze datasets from the field of climate change.
This vignette is based on Hankin (2012).

Keywords: Emulator, multivariate emulator, BACCO.

1. Introduction
Many scientific disciplines require the use of complex computer models. Such models, also
known as “simulators”, are valid objects of inference and are often assumed to be random
functions and assessed using the Bayesian statistical paradigm (Currin, Mitchell, Morris,
and Ylvisaker 1991); in particular, computer models are often assumed to be Gaussian Pro-
cesses (Oakley and O’Hagan 2002).
Although deterministic—in the sense that running the simulator twice with identical inputs
gives identical outputs—the Bayesian paradigm is to treat the code output as a random
variable because, before the computational task is finished, one has subjective uncertainty
about the outcome; de Finetti (1974) discusses the philosophy of this approach. Hankin
(2005) discusses this issue from a computational perspective.
Given that the simulator is a random function, uncertainty about its behaviour is reducible to
an arbitrarily low level by running the simulator sufficiently many times. However, because
many modern simulators require large amounts of computer time to run, this is not possible;
in practice one is typically presented with a fixed number of simulator runs as data.
One tool used to make inferences about simulators under these circumstances is the emula-
tor (Oakley 1999), and the BACCO suite of R packages (Hankin 2005). The emulator is an
established technique that has been used in many fields including Earth systems science (Mc-
Neall 2008), oceanography (Challenor, Hankin, and Marsh 2006), and climate science (Warren
et al. 2008). However, BACCO is limited to univariate random functions. In this paper, I
present a generalization of the Gaussian Process which allows the technique to be used for
multivariate simulator output.
The current work is a generalization of that of Conti and O’Hagan (2010), who presented a
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separable covariance structure. Here, I present a generalization of that work in which the
roughness lengths of the components of the multivariate process are allowed to differ.

1.1. Review of theory for the univariate emulator

This section presents a very brief review of the univariate emulator. Much of the material is
taken directly from Oakley (1999) with slight changes of notation.
For any random univariate function η:Rd → R and set of points {x1, . . . , xn} with xi ∈ Rd,
the random vector y = (η(x1), . . . , η(xn))⊤ is assumed to be multivariate normal:

y| β, Σ ∼ N (Hβ, Σ) (1)

where H = (h(x1), . . . , h(xn))⊤ is the matrix of (known) regressor functions h:Rd → Rq so
the regressor matrix H is n by q, denoted H[n×q]; it is sometimes convenient to write H =
H (X) where X[n×d] is the design matrix. Equation 1 is conditional on the (unknown) vector
of coefficients β[q] and the variance matrix Σ[n×n]. A common choice for h(·) is h(x) =
(1, x1, . . . , xd)⊤ [thus q = d + 1], but one is in principle free to choose any function of x.
The variance matrix is, explicitly:

Σ =


VAR(η(x1)) COV(η(x1), η(x2)) · · · COV(η(x1), η(xn))

COV(η(x2), η(x1)) VAR(η(x2))
...

... . . .
COV(η(xn), η(x1)) · · · VAR(η(xn))

 . (2)

(Oakley writes σ2A for Σ, where A[n×n] is a matrix of correlations and σ2 is an overall
variance). It can be shown that

η(·)| β, Σ, y ∼ N (m∗(·), COV∗(·, ·)) (3)

where

m∗(x) = h(x)⊤β + t(x)⊤Σ−1 (y − Hβ) (4)
COV∗(η(x), η(x′)) = COV(η(x), η(x′)) − t(x)⊤Σ−1t(x′) (5)

t(x)⊤ = (COV(η(x), η(x1)), . . . , COV(η(x), η(xn))) (6)
y⊤ = (η(x1), . . . , η(xn)) . (7)

If an improper flat prior for β is used, its posterior conditional distribution can be shown to
be

β| Σ, y ∼ N
(

β̂,
(
H⊤Σ−1H

)−1
)

where
β̂ =

(
H⊤Σ−1H

)−1
H⊤Σ−1y

is the posterior mean. It is possible to integrate out β to obtain

η(·)| Σ ∼ N (m∗∗(·), COV∗∗(·, ·)) (8)
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where

m∗∗(x) = h(x)⊤β̂ + t(x)⊤Σ−1
(
y − Hβ̂

)
(9)

COV∗∗(η(x), η(x′)) = COV∗(η(x), η(x′)) +(
h(x)⊤ − t(x)⊤Σ−1H

) (
H⊤Σ−1H

)−1 (
h(x′)⊤ − t(x′)⊤Σ−1H

)⊤
.(10)

The two superscript stars mean that the results have been integrated with respect to the
posterior distribution of β. What these equations mean is that

η(·)| Σ ∼ N (m∗∗(·), COV∗∗ (η(·), η(·))) . (11)

Or, in words, that m∗∗(x) is a quick approximation for the η(x) in the sense that its posterior
distribution is Gaussian with mean and variance given by the right hand side of Equation 9
and 10 respectively. It is usual to refer to Equation 11 as the emulator ; observe that the
entire posterior distribution is specified.

Positive definiteness

The covariance matrix, Equation 2, is required to be positive definite for any choice of design
matrix. This can be guaranteed by appropriate choice of covariance function.
Writing COV(η(x), η(x′)) = σ2c(x − x′), then Bochner’s theorem (Feller 1966) shows that Σ
is positive definite for any x1, . . . , xn if and only if c(t) is the characteristic function of a
symmetric probability Borel measure:

c(t) =
∫
ω∈Rd

eiω⊤t dF (ω). (12)

One standard choice (Hankin 2005) is a standard multivariate Gaussian distribution1 with
mean zero and variance S[d×d]. This gives

c(t) =
∫
ω∈Rd

eiω⊤t 1√
|2πS|

exp(− 1
2 ω⊤S−1ω) dω. (13)

In practice one writes B = S−1/2 and absorbs the normalization constant into a σ2 term
leaving:

c(t) = exp{−t⊤Bt} (14)

giving
COV(η(x), η(x′)) = σ2c(x − x′) = σ2 exp{−t⊤Bt}. (15)

Then Σ in equation 2 is guaranteed to be positive-definite.
1A number of different choices for f(·) have been used in the literature. Stein (1999), for example, advocates

a Student t- distribution, but the corresponding generalization of Equation 13 is the subject of “controversy
and difficulties” (Dreier and Kotz 2002), possessing no closed form solution (Sutradhar 1986), and further work
would be needed to implement it in the context of BACCO.
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2. Earlier multivariate work
A natural generalization of Equation 3 is to consider η:Rd → Rp with a separable covariance
function. Conti and O’Hagan (2010), for example, generalized equation 8 to a matrix Gaussian
with a column covariance matrix given by Equation 15, and a row covariance matrix Λ[p×p]
which they treated as an additional hyperparameter.
Rougier (2008), considering the common problem of multidimensional model output that is
indexed by a Cartesian grid, presented a computationally advantageous method; and Higdon
(2008) considered the principal components of multivariate experimental results.
However, all these approaches suffer from the disadvantage that the separability of the covari-
ance matrix implies that the roughness lengths of each of the components are identical. This
assumption is often not justified: For example, in climatology, although rainfall and temper-
ature are correlated, orographic effects mean that spatial correlation lengths are smaller for
rainfall than temperature. The simple example given in Section 5.1 uses terminology inspired
by this motivating example.

2.1. Non-separable covariance structures

To accommodate differing roughness lengths, it is necessary to use non-separable covariance
structures. Examples include that of Majumdar and Gelfand (2007), who observed that the
convolution of two positive-definite covariance functions is again positive definite. However,
Majumdar and Gelfand noted that in practice the convolution will have no closed form, a
drawback not affecting the present work.
Recent unpublished work by Fricker, Oakley, and Urban (2010) also uses convolution tech-
niques and presents a nonseparable covariance structure of which the present work is shown
to be a generalization.
Related work might also include Kennedy and O’Hagan (2000)2, who presented methods to
analyze a hierarchy of levels of a model. The present work, however, does not make the Markov
assumption (their Equation 1), and does not have the nested design restriction (Dt ⊆ Dt−1
in their notation).

2.2. Dimension reduction and Bayesian estimation

Highly multivariate output (such as a temperature field over a 3D Cartesian lattice) is diffi-
cult to deal with and many workers have sought methods to reduce such output to a more
manageable format. The techniques discussed above are a special case of dimension reduction
but other techniques have been presented in the context of Bayesian inference.
Principal Component Analysis is one frequently used tool. Higdon (2008), for example,
considers high dimensional data from a series of experiments involving high explosive and
applies the methods of Kennedy and O’Hagan (2001), although the principal components are
assumed to be independent, an assumption not necessary in the present approach.
Other techniques for dimension reduction exist. Bayarri, Berger, Cafeo, Garcia-Donato, Liu,
Palomo, Parthasarathy, Paulo, Sacks, and Walsh (2007), for example, use wavelet decompo-
sition and use a thresholding procedure to produce a manageable number of coefficients. The

2The approximator package (Hankin 2009) provides a suite of related R functionality.
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techniques outlined in the present paper are applicable in principle to wavelet decompositions,
but further work would be needed.

3. The multivariate case
In this section, I outline a scheme by which the emulator of Section 1.1 may be generalized
to the multivariate case in a computationally tractable manner, with exact expressions for
the (conditional) covariance matrix 2. The presentation uses a generalization of Bochner’s
theorem in such a way as to precisely delineate the space of admissible covariance functions.
In the multivariate case, there are p different types of observation, say ηr(·) for r = 1, . . . , p.
Each type of observation is a Gaussian process (hence susceptible to analysis by the emulator
package), but here we admit covariances between the observation types, so that COV(ηr(x), ηs(x′)) ̸=
0 for r ̸= s. Here ηr(x) is the value of an observation of type r at point x.

We suppose that observations of type r are made at points X(r) =
(
X(r)

1 , . . . , X(r)
nr

)⊤
for 1 ⩽

r ⩽ p. Thus observations of type r are made at points on a design matrix X(r)
[nr×d].

It is straightforward to specify the expectation. This is just

E(d) = Hβ =



h1
(
X(1)

)⊤
0 · · · 0

0 h2
(
X(2)

)⊤ ...
... . . .

0 · · · hp

(
X(p)

)⊤


 β1

...
βp

 (16)

where hr(·) are the basis functions for the observation types r with 1 ⩽ r ⩽ p; thus H[
∑p

r=1 nr×
∑p

r=1 qr]

is a generalized regressor matrix. See how the overall coefficient vector β =
(
β1, . . . , βp

)⊤

may be partitioned into its several components. It is not necessary for all the βr to be of the
same length.
The overall variance matrix will be

Σ =


Σ(11) Σ(12) · · · Σ(1p)

Σ(21) Σ(22) · · · Σ(2p)

...
... . . . ...

Σ(p1) Σ(p2) · · · Σ(pp)

 (17)

where Σ(rs) refers to the covariance between observations of type r and s, specifically Σ(rr)

are the restricted univariate variance matrices for observation type r = 1, . . . , p and the
off-diagonal entries represent covariances.
Generalization to the multivariate case is subtle. We seek a method of determining Σ of
Equation 17 in such as way that Σ(rr) may be specified using standard techniques (typically
from a univariate analysis; the Σ(rr) being determined on the basis of different Br in 15 in
general), and the Σ(rs), r ̸= s represent covariances between observations of type r and s in a
reasonable way. It is necessary to guarantee that Σ in Equation 17 is positive definite.
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Formally, we seek functions Crs(·, ·) with Crs (x, x′) = COV (ηr (x) , ηs (x′)). In the notation
of Equation 17, we would have Σ(rs) = Crs

(
X(r), X(s)

)
as the matrix of covariances between

observations of type r at X(r) and observations of type s at X(s), that is, between ηr

(
X(r)

)
and ηs

(
X(s)

)
. These functions are required to be positive-definite in the sense that Σ of

Equation 17 must be positive definite for any set of points X(1), . . . , X(p).
A matrix generalization of 12 was presented by Cramer (1940) which will be used here: Crs(t)
are positive-definite if and only if they are of the form

Crs(t) =
∫
ω∈Rq

eiω⊤·tdFrs(ω) (18)

for some positive definite Fij(ω). If attention is restricted to absolutely integrable functions
(a condition which will be dropped subsequently), this becomes

Crs(t) =
∫
ω∈Rq

eiω⊤·tfrs(ω) dω. (19)

If we write ||f(ω)|| for the matrix with (r, s) entry frs(ω), then we require ||f(ω)||[p×p] to be
positive definite for all ω.
Considering functions of the form discussed in Equation 13, one approach would be to specify
the off-diagonal elements to be zero. Here p = 3 is used for illustration; the general case
follows directly:

||f(ω)|| =


exp{− 1

2 ω⊤S−1
1 ω}

|2πS1|1/2 0 0

0 exp{− 1
2 ω⊤S−1

2 ω}
|2πS2|1/2 0

0 0 exp{− 1
2 ω⊤S−1

3 ω}
|2πS3|1/2

 (20)

where the Si are positive-definite matrices corresponding to the (marginal) univariate covari-
ance matrices of Equation 15. This matrix is positive definite for all ω. This approach would
only be appropriate if the covariances between observation types were zero.
One way to account for nonzero covariance between observation types is suggested by the
fact that, given positive numbers x1, . . . , xp, the matrix with element (r, s) equal to √

xrxs is
positive semidefinite. Thus

||f(ω)|| =



exp{− 1
2 ω⊤S−1

1 ω}
|2πS1|1/2

exp{− 1
2 ω⊤( 1

2 S−1
1 + 1

2 S−1
2 )ω}

|2πS1|1/4·|2πS2|1/4
exp{− 1

2 ω⊤( 1
2 S−1

1 + 1
2 S−1

3 )ω}
|2πS1|1/4·|2πS3|1/4

exp{− 1
2 ω⊤( 1

2 S−1
2 + 1

2 S−1
1 )ω}

|2πS2|1/4·|2πS1|1/4
exp{− 1

2 ω⊤S−1
2 ω}

|2πS2|1/2
exp{− 1

2 ω⊤( 1
2 S−1

2 + 1
2 S−1

3 )ω}
|2πS2|1/4·|2πS3|1/4

exp{− 1
2 ω⊤( 1

2 S−1
3 + 1

2 S−1
1 )ω}

|2πS3|1/4·|2πS1|1/4
exp{− 1

2 ω⊤( 1
2 S−1

3 + 1
2 S−1

2 )ω}
|2πS3|1/4·|2πS2|1/4

exp{− 1
2 ω⊤S−1

3 ω}
|2πS3|1/2


(21)

is positive semidefinite for all ω provided only that the Si are positive definite; observe
that the diagonal elements of Equations 20 and 21 match. Observe that, with fixed diagonal
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entries, offdiagonal elements cannot exceed those given in Equation 21 while retaining positive
definiteness. The matrix thus corresponds to “maximal correlation” in this sense and the
general terms are then:

Crs(t) =


exp

{
−t⊤Brt

}
if r = s

exp
{

−t⊤( 1
2 B−1

r + 1
2 B−1

s )−1t
}

|( 1
2 Br+ 1

2 Bs)( 1
2 B−1

s + 1
2 B−1

2 )|1/4 otherwise
(22)

where we follow standard convention (Oakley 1999) and write Br = S−1
r /2. Similar expres-

sions occur in the study of nonstationary covariance functions (Paciorek and Schervish 2006;
Higdon 2002); a special case (diagonal matrices) is given by Fricker et al. (2010). These
authors construct the covariance matrix using process convolutions, observing that the con-
volution theorem for Fourier transforms ensures positive definiteness (Higdon 2002, 2008).
Equation 22 gives a positive-semidefinite variance matrix for any design matrix. Noting
that the Schur (elementwise) product of a positive-semidefinite matrix and a positive definite
matrix is positive definite, the relation

C ′
rs(t) = MrsCrs(t) (23)

is a positive definite function. Here M[p×p] is a positive-definite matrix that accounts for
covariance between observation types.

Other forms for the covariance matrix
It is possible to use covariance functions other than the Gaussian form used in Equation 21.
The probability measures are required to be symmetric, and the geometric mean of two
measures is required to have a characteristic function in closed form.
Measures that are proportional to an indicator function, that is

IA(x) =
{

C if x ∈ A
0 otherwise

where C is the normalization constant and A ⊂ R
d is a support set, are a natural choice.

In this case element (i, j) would be IAi∩Aj (x); one could consider support sets that are
hyperspheres or, more interestingly, orthotopes.
One other natural choice would be the multivariate t-distribution, but further work would be
necessary to assess its suitability in this context.

Summary
The univariate emulator is generalized to the p- variate case. Univariate expectation Hβ is
generalized to the multivariate form given in Equation 16, and the univariate variance matrix
of Equation 2 is generalized to the multivariate form 17 with

[
Σ(rs)

]
ij

= Mrs

exp
{

−
(
x(r)

i − x(s)
j

)⊤ (
1
2B−1

r + 1
2B−1

s

)−1 (
x(r)

i − x(s)
j

)}
∣∣∣(1

2Br + 1
2Bs

) (
1
2B−1

r + 1
2B−1

s

)∣∣∣1/4 . (24)
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Figure 1: An example of two correlated Gaussian processes with different roughness lengths,
indicated on the diagram. See how the red curve, having a longer roughness length, is
smoother than the black curve with a shorter roughness length.

arising from the positive definite function C ′ (·, ·) of Equation 23. The matrices Σ(rr) corre-
spond to univariate variance matrices and each is obtained from a matrix Bi of roughnesses in
the same way as in the univariate case. The univariate variance σ2 generalizes to a variance
matrix M whose diagonal elements correspond to the univariate variances σ2

i , 1 ⩽ i ⩽ p.

3.1. Discussion

The above analysis suggests a method by which a covariance matrix may be determined for
multivariate observations. Here I discuss some implications of Equation 24.
Consider the case where Bi are known. Then consider the correlation c(·, ·) between the types
of observations at the same point, ie t = 0 in Equation 22. This is just

|c(r, s)| ⩽
∣∣∣(1

2 Br+ 1
2 Bs

) (
1
2 B−1

r + 1
2 B−1

s

)∣∣∣−1/4
⩽ 1 (25)
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where the first inequality is sharp if and only if M2
rs = MrrMss; observe that M being

positive semidefinite implies M2
rs ⩽ MrrMss. The second inequality follows from the con-

cavity of log |B| (Cover and Thomas 1988) and is thus sharp if and only if Br = Bs. In
the case of 1 × 1 matrices (ie scalars), the matrices commute and the maximum correlation
is

[
1
2(1+BrB−1

s +BsB−1
r )

]−1/4
(Figure 1 shows an example of two maximally correlated Gaussian

processes with different roughness lengths).
Thus Br ̸= Bs imposes an active upper bound on c(r, s): two Gaussian processes with different
roughness coefficients cannot be perfectly correlated.
It is also evident that

COV (ηr (x1) , ηs (x2)) = COV (ηr (x2) , ηs (x1)) , (26)

for any matrices M, Br, Bs.

4. Estimation of hyperparameters
The multivator package requires a generalized set of hyperparameters compared with the em-
ulator package. The emulator package needs a single positive-definite matrix B that expressed
the roughness length of the response function; multivator requires matrices B1, . . . , Bp: One
matrix per type of observation. Each matrix represents the marginal roughness characteristics
of each observation type.
Oakley (1999), and many subsequent authors, assumed that the overall variance matrix Σ
was given by Σ = σ2A, where σ2 is a scalar and A a matrix of correlations. Oakley (1999)
proceeded to integrate out σ2 (using a weak prior distribution) to obtain an expression for
the posterior distribution of the process in terms of σ̂2, the estimated value for σ2.
The approach advocated here, by contrast, generalizes the scalar variance σ2 to M , a p × p
positive-definite matrix which expresses the overall variances and covariances of the p different
types of observation; subsequent analysis is conditional on the values of the Bi and M .
The procedure used in the package is a three step process:

1. Estimate the roughness parameters for each observation type separately, using tech-
niques of the emulator package,

2. Calculate the marginal variance terms, using an analytical expression for the posterior
mode, following Oakley (1999); these are the diagonal elements of M ,

3. Estimate the off-diagonal elements of M by numerical determination of the posterior
mode. To ensure positive-definiteness, an improper flat prior with nonzero support
extending over the positive-definite matrices may be used.

This multi-stage procedure is reminiscent of the two-stage process outlined in Kennedy and
O’Hagan (2001). It seems to work reasonably well in practice. The process is not perfect:
One might wish to calculate the joint likelihood of M and the Bi simultaneously; the relevant
likelihood is given by Oakley’s Equation 2.36, which in our notation is

L (M, B1, . . . , Bp) =
∣∣Σ−1∣∣1/2

|H⊤Σ−1H|1/2 exp
(

−1
2

(
d − Hβ̂

)⊤
Σ−1

(
d − Hβ̂

))
, (27)
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and optimize that, but such an approach seems impractical, even for the toy example consid-
ered here.

5. The package in use
The multivator package of R (R Development Core Team 2011) routines is now demonstrated
using three examples: A toy dataset in which the underlying assumptions are known to be
true; evaluates of a simple function, following Oakley (1999); and a larger dataset drawn
from the discipline of physical oceanography. A brief discussion of the package as applied to
modular systems such as CIAS (Warren et al. 2008) is also given.

5.1. Toy example

Although the toy dataset and associated R objects are simple, they represent the most general
form of the package’s functionality and furnish a comprehensive suite of tests of the package
functionality.
Toy dataset toy_mm is a simple design matrix on three levels: temp, rain, and humidity.

R> data("mtoys")
R> head(toy_mm)

a b c d type
t1 0.500 0.500 0.500 0.500 temp
r1 0.500 0.500 0.500 0.500 rain
h1 0.500 0.500 0.500 0.500 humidity
t2 0.551 0.358 0.347 0.960 temp
t3 0.688 0.642 0.994 0.540 temp
t4 0.722 0.653 0.733 0.324 temp

Thus toy_mm is a multivariate design matrix, typically a latin hypercube. Observations on
toy_mm are provided in toy_d:

R> head(toy_d)

t1 r1 h1 t2 t3 t4
9.25 6.19 5.01 11.42 11.17 8.31

The central function of the package is multem(), corresponding to interp() of package
emulator. Suppose we wish to make inferences about a particular point in parameter space:

R> toy_point

a b c d type
t1 0.3 0.4 0.5 0.6 temp
r1 0.3 0.4 0.5 0.6 rain
h1 0.3 0.4 0.5 0.6 humidity
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Thus toy_point corresponds to measuring all three levels (temp, rain, humidity) at a single
point in parameter space. It is straightforward to use the package to provide an estimate for
the process at this point, using multem():

R> (e <- multem(toy_point, toy_expt, toy_mhp, toy_LoF, give = TRUE))

$mstar
t1 r1 h1

8.68 4.99 3.64

$cstar
t1 r1 h1

t1 0.781 -0.202 0.110
r1 -0.202 0.570 0.281
h1 0.110 0.281 0.743

[Object toy_expt is an S4 object with slots for the design matrix and observations, produced
by experiment()]. The return value of multem() is a two-element list with the first being a
vector whose elements are the posterior mean for each row of the multivariate design matrix
toy_mm, and the second is the conditional variance matrix. Thus we see that, at this point
in parameter space, temperature and rainfall are negatively correlated. The diagonal of the
matrix gives the (conditional) marginal variances for the three levels (temp, rain, humidity).
So, for example, one might sample from the posterior distribution:

R> rmvnorm(n=5,mean=e$mstar,sigma=e$cstar)

t1 r1 h1
[1,] 9.93 4.84 4.79
[2,] 9.61 4.83 2.53
[3,] 7.91 4.91 3.50
[4,] 10.60 5.06 3.30
[5,] 7.70 4.89 3.24

The equivalent univariate analysis may be carried out using function interpolant.quick()
of the emulator package:

R> interpolant.quick(
+ x = x_uni,
+ d = d_uni,
+ xold = m_uni,
+ Ainv = A_uni,
+ scales = s_uni,
+ func = f_uni,
+ give.Z = TRUE)
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$mstar.star
[1] 8.77

$Z
[1] 1.6

$prior
[1] 7.58

[the _uni suffix denotes the univariate subset corresponding to temp]. The mean value changes
from about 8.68 in the multivariate case to 8.77 in the univariate case, and the conditional
variance changes from about 0.781 to about 1.6022 = 2.567. The difference is due to the
nonindependence of the observation types.

5.2. Estimation of the hyperparameters in the package

In this section, the hyperparameters for the synthetic dataset considered above are estimated
using the package, following the scheme suggested above.
In common with the emulator and calibrator packages, the multivator package includes func-
tionality to create datasets with values drawn from the appropriate distribution.

R> mm <- toy_mm_maker(81,82,83)
R> d <- obs_maker(mm, toy_mhp, toy_LoF, toy_beta)
R> jj_expt <- experiment(mm,d)

Here mm is a multivariate design matrix, created using a latin hypercube; the three argu-
ments specify the number of points in parameter space at which each observation type is
made. Function obs_maker() creates observations drawn from the appropriate distribution.
Here, toy_mhp is a hyperparameter object (a matrix M[3×3] of covariances, and three B[4×4]
roughness matrices, one per observation type); toy_LoF is a list of regressor functions, and
toy_beta is a vector of regression coefficients.
The function optimal_scales() first estimates the Bi matrices and then, conditional on this,
estimates the overall covariance matrix M , conditional on the Bi, using Equation 27:

R> mhp_opt <- optimal_params(jj_expt, toy_LoF, option="b")

Specifying option="b" restricts the Bi to diagonal matrices. The optimized value for M , the
matrix of covariances is then given by

R> M(mhp_opt)

temp rain humidity
temp 0.954 -1.0722 0.4803
rain -1.072 1.3264 -0.0398
humidity 0.480 -0.0398 2.3337

Compare the true value:
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R> M(toy_mhp)

temp rain humidity
temp 1.0 -0.7 0.5
rain -0.7 2.0 1.4
humidity 0.5 1.4 3.0

5.3. Validation

It is possible to validate the above approach by the technique of using half the dataset for
fitting the emulator (as above), then the remaining half for validation. The appropriate R
expression would be

R> est2 <- multem(toy_mm2, toy_expt, toy_mhp, toy_LoF)

where toy_mm and toy_mm2 are components of the same multivariate observation taken from
the distribution specified in Equation 1. Figure 2 shows such an exercise, exhibiting reasonable
agreement between observed and predicated values.

6. Simple functional analysis
In this section, a simple function f :R2 → R2 is considered, and univariate inference is com-
pared with the multivariate techniques introduced above.
From a computational perspective, an analysis using the multivator package is presented
“from scratch”; standard R objects are coerced to the appropriate S4 objects.
The functions considered are fa(x, y) = sin(5 ·(x+y)) and fb(x, y) = 7 sin(5 ·(x+y))+sin(20 ·
(x − y)). These functions correspond to observations of type ‘a’ and ‘b’ respectively, and are
chosen so that they are correlated, but fa might be expected to have a smoother response
than fb. An experimental design is then needed for each function, which in this case is a
simple latin hypercube:

R> # number of observation points:
R> na <- 33 # observation of 'a'
R> nb <- 09 # observation of 'b'

R> xa <- latin.hypercube(na,2) # so rows of 'xa' are observation points for 'a'
R> xb <- xa[seq_len(nb),]
R> #xb <- latin.hypercube(nb,2)

Thus xa and xb are standard R matrices. It is now possible to evaluate fa and fb over their
experimental designs:

R> a_obs <- apply(xa,1,fa)
R> b_obs <- apply(xb,1,fb)
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Figure 2: Observed vs predicted values for a sample from the multivariate Gaussian distribu-
tion defined by Equation 1 with mean and variance defined by Equations 16 and 24. Error
bars correspond to marginal standard deviations.

Thus there are two design matrices xa and xb, and two corresponding sets of observations, here
a_obs and b_obs, all in the form of standard R objects (matrices and vectors respectively).
It is now straightforward to apply the multivator package methods.
We first define a multivariate design matrix (an object of class “mdm”) by combining the
univariate design matrices xa and xb, then create an experiment object by adding the code
observations; and finally estimate optimal parameters using optimal_params():

R> RS_mdm <- mdm(rbind(xa,xb),types=c(rep("a",na),rep("b",nb)))
R> RS_expt <- experiment(mm=RS_mdm, obs= c(a_obs,b_obs))
R> RS_opt <- optimal_params(RS_expt, option="b")

The three objects above define a working multivariate emulator in terms of bespoke S4 objects
specific to the multivator package. Suppose we wish to predict fb and fb on a set of n = 20
points in its domain:
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Figure 3: Analysis of a simple function on a 2D Latin hypercube. Function evaluations on the
horizontal axis plotted against predicted values on the vertical axis. (a), univariate emulation
(R2 = 0.74) and (b), multivariate emulation (R2 = 0.74).

R> n <- 20
R> xnew <- latin.hypercube(n,2,names=c("x","y"))
R> #xnew <- cbind(x=runif(20),y=runif(20))

The appropriate R idiom is to create a new multivariate design matrix on xnew; then use
function multem() to provide multivariate estimates of fb on the design matrix:

R> RS_new_mdm <- mdm(rbind(xnew,xnew),rep(c("a","b"),each=n))
R> RS_prediction <- multem(x=RS_new_mdm, expt=RS_expt, hp=RS_opt)

A graphical summary of the results is given in Figure 3.

7. Data analysis using multivator
The package is now used to analyze climate change data obtained from the Genie-Goldstein
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Figure 4: Typical output from Genie-Goldstein: A global map of temperature, interpreted as
yearly average values.

model, a computationally efficient Earth-Systems model designed to assess climate change
from an oceanographical perspective on a timescale of centuries to millennia (Edwards and
Marsh 2005).
McNeall (2008) considered Genie-Goldstein output and used Principal Component Analysis
as an analytic technique. Here, I consider the first four principal components using the
multivator package. Although principal components are mutually orthogonal, they are not
necessarily independent with respect to any given regressors. I now show how data provided
by McNeall may be analyzed using the multivator package.

R> data("mcneall")
R> dim(mcneall_temps)

[1] 2048 92

The mcneall_temps matrix has 92 columns, one for each of 92 runs of Genie-Goldstein. Each
column, of 2048 numbers, corresponds to a map of global temperature; an example is given
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in Figure 4 in which the showmap() function is used to reshape the vector to a form suitable
for display.
Dataset mcneall_pc has 92 rows, one per run, and 20 columns. The first 16 columns show
the design matrix of independent variables3. The last four columns are the first four principal
components of the output; an interpretation is given in Figure 5.

R> dim(mcneall_pc)

[1] 92 20

R> head(mcneall_pc,2)

WSF AHD AMD WAHDP ZHAF MHAF ZMAF MMAF CRF THP
[1,] 0.310 0.3774 0.924 0.3515 0.894 0.449 0.791 0.0988 0.216 0.11
[2,] 0.278 0.0963 0.451 0.0951 0.209 0.364 0.203 0.5285 0.825 0.30

APMF SC OHD OVD ODC SID pc1 pc2 pc3
[1,] 0.340 0.528 0.401 0.672 0.590 0.435 -0.0335 -0.01571 0.0545
[2,] 0.472 0.087 0.682 0.510 0.435 0.730 -0.2129 0.00541 -0.1584

pc4
[1,] 0.0398
[2,] 0.0782

Although this dataset is more involved than the others considered in this paper, the same
computational techniques may be used:

R> jj <- apart(mcneall_pc, 17:20)
R> opt_mcneall <- optimal_params(jj, start_hp=opt_mcneall, option='a')

Then we may examine the covariance matrix between residuals of the first four principal
components:

R> (CM <- M(opt_mcneall))

pc1 pc2 pc3 pc4
pc1 6.08e-04 -0.000149 -5.63e-05 -0.000674
pc2 -1.49e-04 0.001954 -1.74e-04 0.000396
pc3 -5.63e-05 -0.000174 5.12e-03 0.001365
pc4 -6.74e-04 0.000396 1.36e-03 0.007301

This shows that the correlations between the principal components are nontrivial:

R> CM/sqrt(tcrossprod(diag(CM)))
3That is, physical parameters with uncertain values, needed as inputs to Genie-Goldstein; the first one,

‘WSF’, for example, is ‘windstress scaling factor’; McNeall gives a full discussion and a table on page 50.
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Figure 5: The first four principal components in the McNeall dataset of 92 Genie-Goldstein
runs. The first shows the standard Pole/Equator variability; the second shows the uncertainty
near the South Pole; the third represents uncertainty due to the bistability of the meridional
overturning circulation in the North Atlantic; the fourth appears to be related to the state of
the Pacific Decadal Oscillation or possibly the ENSO.

pc1 pc2 pc3 pc4
pc1 1.0000 -0.137 -0.0319 -0.320
pc2 -0.1369 1.000 -0.0550 0.105
pc3 -0.0319 -0.055 1.0000 0.223
pc4 -0.3201 0.105 0.2233 1.000

In particular, the positive correlation between the third and fourth component may be in-
terpreted from the perspective of more sophisticated approaches such as general circulation
models (Wan 2009).
Note that these correlations are conditional upon the form of the regressor functions (here
the default set default_LoF).
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7.1. Modular systems

Multivariate emulation appears to be a useful technique in the context of modular systems
such as CIAS (Warren et al. 2008) in which a model comprises various component “modules”.
In the case of CIAS, the modules address various aspects of the global climate system and
examples include E3MG which models the global economy, MAGICC which models the phys-
ical global climate, and ICLIPS which models the impacts of climate change. The modules
exchange information at runtime using the BFG protocol.
One feature of CIAS is that it is possible to replace any module with another functionally
equivalent one. Multivariate emulation is useful when considering the behaviour of CIAS used
in this way. If one has p different interchangeable modules, then the output of CIAS is a
p-variate random variable that may be analyzed using the multivator package.
In an associated vignette, visible from within an R session by typing vignette("cias"), a
short analysis of a synthetic dataset is presented.

8. Discussion
A generalization of the emulator to multivariate datasets is proposed and the multivator
package has been introduced. The package is used to analyze datasets drawn from the fields of
oceanography and climate change. The variance structure proposed appears to have pleasing
and useful properties. Further work might include extension of the ideas presented here to
complex functions.

References

Bayarri MJ, Berger JO, Cafeo J, Garcia-Donato G, Liu F, Palomo J, Parthasarathy RJ, Paulo
R, Sacks J, Walsh D (2007). “Computer Model Validation with Functional Output.” The
Annals of Statistics, 35(5), 1874–1906.

Challenor P, Hankin RKS, Marsh R (2006). Avoiding Dangerous Climate Change, chapter
7, “Towards the Probability of Rapid Climate Change”, pp. 55–63. Cambridge University
Press.

Conti S, O’Hagan A (2010). “Bayesian Emulation of Complex Multi-Output and Dynamic
Computer Models.” Journal of Statistical Planning and Inference, 140, 640–651.

Cover TM, Thomas JA (1988). “Determinant Inequalities Via Information Theory.” Siam
Journal on Matrix Analysis and Applications, 9(3), 384–392.

Cramer H (1940). “On the Theory of Stationary Random Processes.” The Annals of Mathe-
matics, 41(1), 215–230. ISSN 0003486X. URL http://www.jstor.org/stable/1968827.

Currin C, Mitchell TJ, Morris M, Ylvisaker D (1991). “Bayesian Prediction of Deterministic
Functions with Applications to the Design and Analysis of Computer Experiments.” Journal
of the American Statistical Association, 86, 953–963.

de Finetti B (1974). Theory of Probability. John Wiley & Sons.

http://www.jstor.org/stable/1968827


20 A Multivariate Emulator

Dreier I, Kotz S (2002). “A Note on the Characteristic Function of the t-Distribution.”
Statistics and Probability Letters, 57, 221–224.

Edwards N, Marsh R (2005). “Uncertainties due to Transport-Parameter Sensitivity in an
Efficient 3D Ocean-Climate Model.” Climate Dynamics, 24, 415–433.

Feller W (1966). An Introduction to Probability Theory and its Applications, volume two.
John Wiley & Sons.

Fricker T, Oakley J, Urban NM (2010). “Multivariate Emulators with Nonseparable Covari-
ance Structures.” URL http://www.mucm.ac.uk/Pages/Dissemination/Dissemination_
Papers_Technical.html.

Hankin RKS (2005). “Introducing BACCO, an R Bundle for Bayesian Analysis of Computer
Code Output.” Journal of Statistical Software, 14(16).

Hankin RKS (2009). approximator: Bayesian Prediction Of Complex Computer Codes. R
package version 1.1-6, URL https://CRAN.R-project.org/package=approximator.

Hankin RKS (2012). “Introducing multivator: A Multivariate Emulator.” Journal of Statis-
tical Software, 46(8), 1–20. doi:10.18637/jss.v046.i08.

Higdon D (2002). “Space and Space-Time Modeling Using Process Convolutions.” In CW An-
derson, V Barnett, PC Chatwin, AH El-Shaarawi (eds.), Quantitative Methods for Current
Environmental Issues, pp. 37–56. Springer-Verlag. ISBN 1852332948.

Higdon D (2008). “Computer Model Calibration Using High-Dimensional Output.” Journal
of the American Statistical Association, 103(482), 570–583.

Kennedy MC, O’Hagan A (2000). “Predicting the Output From a Complex Computer Code
When Fast Approximations Are Available.” Biometrika, 87(1), 1–13.

Kennedy MC, O’Hagan A (2001). “Bayesian Calibration Of Computer Models.” Journal of
the Royal Statistical Society B, 63(3), 425–464.

Majumdar A, Gelfand AE (2007). “Multivariate Spatial Modeling for Geostatistical Data
Using Convolved Covariance Functions.” Mathematical Geology, 39(2), 225–245.

McNeall DJ (2008). Dimension Reduction in the Bayesian Analysis of a Numerical Climate
Model. Ph.D. thesis, University of Southampton.

Oakley J (1999). Bayesian Uncertainty Analysis For Complex Computer Codes. Ph.D. thesis,
University of Sheffield.

Oakley J, O’Hagan A (2002). “Bayesian Inference For The Uncertainty Distribution Of
Computer Model Outputs.” Biometrika, 89(4), 769–784.

Paciorek CJ, Schervish MJ (2006). “Spatial Modelling Using a New Class of Nonstationary
Covariance Functions.” Environmetrics, 17(5), 483–506. doi:10.1002/env.785. URL
http://dx.doi.org/10.1002/env.785.

http://www.mucm.ac.uk/Pages/Dissemination/Dissemination_Papers_Technical.html
http://www.mucm.ac.uk/Pages/Dissemination/Dissemination_Papers_Technical.html
https://CRAN.R-project.org/package=approximator
https://doi.org/10.18637/jss.v046.i08
https://doi.org/10.1002/env.785
http://dx.doi.org/10.1002/env.785


Robin K. S. Hankin 21

R Development Core Team (2011). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:
//www.R-project.org/.

Rougier J (2008). “Efficient Emulators for Multivariate Deterministic Functions.” Journal of
Computational and Graphical Statistics, 17(4), 827–843.

Stein ML (1999). Interpolation of Spatial Data: Some Theory for Kriging. Springer-Verlag.

Sutradhar BC (1986). “On the Characteristic Function of Multivariate Student t-
Distribution.” The Canadian Journal of Statistics, 14(4), 329–337.

Wan X (2009). Effect of Atlantic Meridional Overturning Circulation Changes on Tropical
Coupled Ocean-Atmosphere System. Ph.D. thesis, Texas A&M University.

Warren R, et al. (2008). “Development and Illustrative Outputs Of The Community Inte-
grated Assessment System (CIAS), a Multi-Institutional Modular Integrated Assessment
Approach for Modelling Climate Change.” Environmental Modelling and Software, 23,
592–610.

Affiliation:
Robin K. S. Hankin
Auckland University of Technology
School of Computing and Mathematical Sciences
Wakefield Street
Auckland
New Zealand
E-mail: hankin.robin@gmail.com

http://www.R-project.org/
http://www.R-project.org/
mailto:hankin.robin@gmail.com

	Introduction
	Review of theory for the univariate emulator
	Positive definiteness


	Earlier multivariate work
	Non-separable covariance structures
	Dimension reduction and Bayesian estimation

	The multivariate case
	Other forms for the covariance matrix
	Discussion

	Estimation of hyperparameters
	The package in use
	Toy example
	Estimation of the hyperparameters in the package
	Validation

	Simple functional analysis
	Data analysis using multivator
	Modular systems

	Discussion

