Title: | Create and Investigate Magic Squares |
---|---|
Description: | A collection of functions for the manipulation and analysis of arbitrarily dimensioned arrays. The original motivation for the package was the development of efficient, vectorized algorithms for the creation and investigation of magic squares and high-dimensional magic hypercubes. |
Authors: | Robin K. S. Hankin [aut, cre] |
Maintainer: | Robin K. S. Hankin <[email protected]> |
License: | GPL-2 |
Version: | 1.6-1-1 |
Built: | 2024-12-25 04:11:07 UTC |
Source: | https://github.com/robinhankin/magic |
A collection of functions for the manipulation and analysis of arbitrarily dimensioned arrays. The original motivation for the package was the development of efficient, vectorized algorithms for the creation and investigation of magic squares and high-dimensional magic hypercubes.
The DESCRIPTION file:
Package: | magic |
Version: | 1.6-1-1 |
Title: | Create and Investigate Magic Squares |
Authors@R: | person(given=c("Robin", "K. S."), family="Hankin", role = c("aut","cre"), email="[email protected]", comment = c(ORCID = "0000-0001-5982-0415")) |
Depends: | R (>= 2.10), abind |
Description: | A collection of functions for the manipulation and analysis of arbitrarily dimensioned arrays. The original motivation for the package was the development of efficient, vectorized algorithms for the creation and investigation of magic squares and high-dimensional magic hypercubes. |
Maintainer: | Robin K. S. Hankin <[email protected]> |
License: | GPL-2 |
URL: | https://github.com/RobinHankin/magic, https://robinhankin.github.io/magic/ |
BugReports: | https://github.com/RobinHankin/magic/issues |
Repository: | https://robinhankin.r-universe.dev |
RemoteUrl: | https://github.com/robinhankin/magic |
RemoteRef: | HEAD |
RemoteSha: | 6b625572e0a2f229ef88be40fb86a80166118bad |
Author: | Robin K. S. Hankin [aut, cre] (<https://orcid.org/0000-0001-5982-0415>) |
Index of help topics:
Frankenstein A perfect magic cube due to Frankenstein Ollerenshaw A most perfect square due to Ollerenshaw adiag Binds arrays corner-to-corner allsubhypercubes Subhypercubes of magic hypercubes allsums Row, column, and two diagonal sums of arrays apad Pad arrays apl Replacements for APL functions take and drop aplus Generalized array addition arev Reverses some dimensions; a generalization of rev arot Rotates an array about two specified dimensions arow Generalized row and col as.standard Standard form for magic squares cilleruelo A class of multiplicative magic squares due to Cilleruelo and Luca circulant Circulant matrices of any order cube2 A pantriagonal magic cube diag.off Extracts broken diagonals do.index Apply a function to array element indices eq Comparison of two magic squares fnsd First non-singleton dimension force.integer Integerize array elements hadamard Hadamard matrices hendricks A perfect magic cube due to Hendricks hudson Pandiagonal magic squares due to Hudson is.magic Various tests for the magicness of a square is.magichypercube magic hypercubes is.ok does a vector have the sum required to be a row or column of a magic square? is.square.palindromic Is a square matrix square palindromic? latin Random latin squares lozenge Conway's lozenge algorithm for magic squares magic Creates magic squares magic-package Create and Investigate Magic Squares magic.2np1 Magic squares of odd order magic.4n Magic squares of order 4n magic.4np2 Magic squares of order 4n+2 magic.8 Regular magic squares of order 8 magic.constant Magic constant of a magic square or hypercube magic.prime Magic squares prime order magic.product Product of two magic squares magiccube.2np1 Magic cubes of order 2n+1 magiccubes Magic cubes of order 3 magichypercube.4n Magic hypercubes of order 4n magicplot Joins consecutive numbers of a magic square. minmax are all elements of a vector identical? notmagic.2n An unmagic square nqueens N queens problem panmagic.4 Panmagic squares of order 4 panmagic.6npm1 Panmagic squares of order 4n, 6n+1 and 6n-1 panmagic.8 Panmagic squares of order 8 perfectcube5 A perfect magic cube of order 5 perfectcube6 A perfect cube of order 6 process Force index arrays into range recurse Recursively apply a permutation sam Sparse antimagic squares shift Shift origin of arrays and vectors strachey Strachey's algorithm for magic squares subsums Sums of submatrices transf Frenicle's equivalent magic squares
Robin K. S. Hankin [aut, cre] (<https://orcid.org/0000-0001-5982-0415>)
Maintainer: Robin K. S. Hankin <[email protected]>
R. K. S. Hankin 2005. “Recreational mathematics with R: introducing the magic package”. R news, 5(1)
magic(6) magicplot(magic(8)) magichypercube.4n(1) is.alicehypercube(magichypercube.4n(1,d=5),4,give.answers=TRUE)
magic(6) magicplot(magic(8)) magichypercube.4n(1) is.alicehypercube(magichypercube.4n(1,d=5),4,give.answers=TRUE)
Array generalization of blockdiag()
adiag(... , pad=as.integer(0), do.dimnames=TRUE)
adiag(... , pad=as.integer(0), do.dimnames=TRUE)
... |
Arrays to be binded together |
pad |
Value to pad array with; note default keeps integer status of arrays |
do.dimnames |
Boolean, with default |
Binds any number of arrays together, corner-to-corner. Because the
function is associative provided pad
is of length 1, this page
discusses the two array case.
Suppose x <- adiag(a,b)
and dim(a)=c(a_1,...,a_d)
,
dim(b)=c(b_1,...,b_d)
. Then we have
all(dim(x)==dim(a)+dim(b))
; and x[1:a_1,...,1:a_d]==a
and
x[(a_1+1):(a_1+b_1),...,(a_d+1):(a_d+b_d)]==b
.
Dimnames are preserved, if both arrays have non-null dimnames, and
do.dimnames
is TRUE
.
Argument pad
is usually a length-one vector, but any vector is
acceptable; standard recycling is used. Be aware that the output array
(of dimension dim(a)+dim(b)
) is filled with (copies of)
pad
before a
and b
are copied. This can be
confusing.
Returns an array of dimensions dim(a)+dim(b)
as described above.
In adiag(a,b)
, if a
is a length-one vector, it is coerced
to an array of dimensions rep(1,length(dim(b)))
; likewise
b
. If both a
and b
are length-one vectors, return
diag(c(a,b))
.
If a
and b
are arrays, function adiag()
requires
length(dim(a))==length(dim(b))
(the function does not guess which
dimensions have been dropped; see examples section). In particular,
note that vectors are not coerced except if of length one.
adiag()
is used when padding magic hypercubes in the context
of evaluating subarray sums.
Peter Wolf with some additions by Robin Hankin
a <- array( 1,c(2,2)) b <- array(-1,c(2,2)) adiag(a,b) ## dropped dimensions can count: b2 <- b1 <- b dim(a) <- c(2,1,2) dim(b1) <- c(2,2,1) dim(b2) <- c(1,2,2) dim(adiag(a,b1)) dim(adiag(a,b2)) ## dimnames are preserved if not null: a <- matrix(1,2,2,dimnames=list(col=c("red","blue"),size=c("big","small"))) b <- 8 dim(b) <- c(1,1) dimnames(b) <- list(col=c("green"),size=c("tiny")) adiag(a,b) #dimnames preserved adiag(a,8) #dimnames lost because second argument has none. ## non scalar values for pad can be confusing: q <- matrix(0,3,3) adiag(q,q,pad=1:4) ## following example should make the pattern clear: adiag(q,q,pad=1:36) # Now, a use for arrays with dimensions of zero extent: z <- array(dim=c(0,3)) colnames(z) <- c("foo","bar","baz") adiag(a,z) # Observe how this has # added no (ie zero) rows to "a" but # three extra columns filled with the pad value adiag(a,t(z)) adiag(z,t(z)) # just the pad value
a <- array( 1,c(2,2)) b <- array(-1,c(2,2)) adiag(a,b) ## dropped dimensions can count: b2 <- b1 <- b dim(a) <- c(2,1,2) dim(b1) <- c(2,2,1) dim(b2) <- c(1,2,2) dim(adiag(a,b1)) dim(adiag(a,b2)) ## dimnames are preserved if not null: a <- matrix(1,2,2,dimnames=list(col=c("red","blue"),size=c("big","small"))) b <- 8 dim(b) <- c(1,1) dimnames(b) <- list(col=c("green"),size=c("tiny")) adiag(a,b) #dimnames preserved adiag(a,8) #dimnames lost because second argument has none. ## non scalar values for pad can be confusing: q <- matrix(0,3,3) adiag(q,q,pad=1:4) ## following example should make the pattern clear: adiag(q,q,pad=1:36) # Now, a use for arrays with dimensions of zero extent: z <- array(dim=c(0,3)) colnames(z) <- c("foo","bar","baz") adiag(a,z) # Observe how this has # added no (ie zero) rows to "a" but # three extra columns filled with the pad value adiag(a,t(z)) adiag(z,t(z)) # just the pad value
Extracts all subhypercubes from an n-dimensional hypercube.
allsubhypercubes(a)
allsubhypercubes(a)
a |
The magic hypercube whose subhypercubes are computed |
Returns a list, each element of which is a subhypercube of a
.
Note that major diagonals are also returned (as n-by-1 arrays).
The names of the list are the extracted subhypercubes. Consider
a <- magichypercube.4n(1,d=4)
(so n=4) and if jj <-
allsubhypercubes(a)
, consider jj[9]
. The name of
jj[9]
is "n-i+1,i,i,"
; its value is a square matrix. The
columns of jj[9]
may be recovered by a[n-i+1,i,i,]
with (NB: that is,
jj[[9]] ==
cbind(a[n-1+1,1,1,],
a[n-2+1,2,2,], a[n-3+1,3,3,], a[n-4+1,4,4,])
where n=4
).
The list does not include the whole array.
This function is a dog's dinner. It's complicated, convoluted,
and needs an absurd use of the eval(parse(text=...))
construction. Basically it sucks big time.
BUT... I cannot for the life of me see a better way that gives the same results, without loops, on hypercubes of arbitrary dimension.
On my 256MB Linuxbox, allsubhypercubes()
cannot cope with
d
as high as 5, for n=4
. Heigh ho.
The term “subhypercube” does not include diagonally oriented
entities at is.magichypercube
. But it does here.
Robin K. S. Hankin
a <- magichypercube.4n(1,d=4) allsubhypercubes(a)
a <- magichypercube.4n(1,d=4) allsubhypercubes(a)
Returns all rowsums, all columnsums, and all (broken) diagonal sums of a putative magic square.
allsums(m,func=NULL, ...)
allsums(m,func=NULL, ...)
m |
The square to be tested |
func |
Function, with default |
... |
Further arguments passed to |
Returns a list of four elements. In the following, “sums” means “the result of applying func()”.
rowsums |
All |
colsums |
All |
majors |
All |
minors |
All |
If func()
returns a vector, then the allsums()
returns a
list whose columns are the result of applying func()
. See third
and fourth examples below.
Used by is.magic()
et seq.
The major and minor diagonals would benefit from being recoded in C.
Robin K. S. Hankin
is.magic
,is.semimagic
,is.panmagic
allsums(magic(7)) allsums(magic(7),func=max) allsums(magic(7),func=range) allsums(magic(7),func=function(x){x[1:2]}) allsums(magic(7),sort) # beware! compare apply(magic(7),1,sort) and apply(magic(7),2,sort)
allsums(magic(7)) allsums(magic(7),func=max) allsums(magic(7),func=range) allsums(magic(7),func=function(x){x[1:2]}) allsums(magic(7),sort) # beware! compare apply(magic(7),1,sort) and apply(magic(7),2,sort)
Generalized padding for arrays of arbitrary dimension
apad(a, l, e = NULL, method = "ext", post = TRUE)
apad(a, l, e = NULL, method = "ext", post = TRUE)
a |
Array to be padded |
l |
Amount of padding to add. If a vector of length greater than
one, it is interpreted as
the extra extent of |
e |
If |
method |
String specifying the values of the padded elements. See details section. |
post |
Boolean, with default |
Argument method
specifies the values of the padded elements.
It can be either “ext
”,
“mirror
”, or “rep
”.
Specifying ext
(the default) uses a padding value given by
the “nearest” element of a
, as measured by the
Manhattan metric.
Specifying mirror
fills the array with alternate mirror
images of a
; while rep
fills it with unreflected copies
of a
.
Function apad()
does not work with arrays with dimensions of
zero extent: what to pad it with? To pad with a particular value, use
adiag()
.
The function works as expected with vectors, which are treated as one-dimensional arrays. See examples section.
Function apad()
is distinct from adiag()
, which takes
two arrays and binds them together. Both functions create an array of
the same dimensionality as their array arguments but with possibly
larger extents. However, the functions differ in the values of the
new array elements. Function adiag()
uses a second array;
function apad()
takes the values from its primary array argument.
Robin K. S. Hankin
apad(1:10,4,method="mirror") a <- matrix(1:30,5,6) apad(a,c(4,4)) apad(a,c(4,4),post=FALSE) apad(a,1,5) apad(a,c(5,6),method="mirror") apad(a,c(5,6),method="mirror",post=FALSE)
apad(1:10,4,method="mirror") a <- matrix(1:30,5,6) apad(a,c(4,4)) apad(a,c(4,4),post=FALSE) apad(a,1,5) apad(a,c(5,6),method="mirror") apad(a,c(5,6),method="mirror",post=FALSE)
Replacements for APL functions take and drop
apldrop(a, b, give.indices=FALSE) apldrop(a, b) <- value apltake(a, b, give.indices=FALSE) apltake(a, b) <- value
apldrop(a, b, give.indices=FALSE) apldrop(a, b) <- value apltake(a, b, give.indices=FALSE) apltake(a, b) <- value
a |
Array |
b |
Vector of number of indices to take/drop. Length of |
give.indices |
Boolean, with default |
value |
elements to replace |
apltake(a,b)
returns an array of the same dimensionality as
a
. Along dimension i
, if b[i]>0
, the first
b[i]
elements are retained; if b[i]<0
, the last
b[i]
elements are retained.
apldrop(a,b)
returns an array of the same dimensionality as
a
. Along dimension i
, if b[i]>0
, the first
b[i]
elements are dropped if b[i]<0
, the last
b[i]
elements are dropped.
These functions do not drop singleton dimensions. Use drop()
if this is desired.
Robin K. S. Hankin
a <- magichypercube.4n(m=1) apltake(a,c(2,3,2)) apldrop(a,c(1,1,2)) b <- matrix(1:30,5,6) apldrop(b,c(1,-2)) <- -1 b <- matrix(1:110,10,11) apltake(b,2) <- -1 apldrop(b,c(5,-7)) <- -2 b
a <- magichypercube.4n(m=1) apltake(a,c(2,3,2)) apldrop(a,c(1,1,2)) b <- matrix(1:30,5,6) apldrop(b,c(1,-2)) <- -1 b <- matrix(1:110,10,11) apltake(b,2) <- -1 apldrop(b,c(5,-7)) <- -2 b
Given two arrays a
and b
with
length(dim(a))==length(dim(b))
, return a matrix with
dimensions pmax(dim(a),dim(b))
where “overlap”
elements are a+b
, and the other elements are either 0, a, or
b according to location. See details section.
aplus(...)
aplus(...)
... |
numeric or complex arrays |
The function takes any number of arguments (the binary operation is associative).
The operation of aplus()
is understandable by examining the
following pseudocode:
outa <- array(0,pmax(a,b))
outb <- array(0,pmax(a,b))
outa[1:dim(a)] <- a
outb[1:dim(a)] <- b
return(outa+outb)
See how outa
and outb
are the correct size and the
appropriate elements of each are populated with a
and b
respectively. Then the sum is returned.
Robin K. S. Hankin
aplus(rbind(1:9),cbind(1:9)) a <- matrix(1:8,2,4) b <- matrix(1:10,5,2) aplus(a*100,b,b)
aplus(rbind(1:9),cbind(1:9)) a <- matrix(1:8,2,4) b <- matrix(1:10,5,2) aplus(a*100,b,b)
A multidimensional generalization of rev()
: given an array
a
, and a Boolean vector swap
, return an array of the
same shape as a
but with dimensions corresponding to TRUE
elements of swap
reversed. If swap
is not Boolean, it is
interpreted as the dimensions along which to swap.
arev(a, swap = TRUE)
arev(a, swap = TRUE)
a |
Array to be reversed |
swap |
Vector of Boolean variables. If |
If swap
is not Boolean, it is equivalent to 1:n %in%
swap
(where n
is the number of dimensions). Thus multiple
entries are ignored, as are entries greater than n
.
If a
is a vector, rev(a)
is returned.
Function arev()
handles zero-extent dimensions as expected.
Function arev()
does not treat singleton dimensions specially,
and is thus different from Octave's flipdim()
, which (if
supplied with no second argument) flips the first nonsingleton
dimension. To reproduce this, use arev(a,fnsd(a))
.
Robin K. S. Hankin
a <- matrix(1:42,6,7) arev(a) #Note swap defaults to TRUE b <- magichypercube.4n(1,d=4) arev(b,c(TRUE,FALSE,TRUE,FALSE))
a <- matrix(1:42,6,7) arev(a) #Note swap defaults to TRUE b <- magichypercube.4n(1,d=4) arev(b,c(TRUE,FALSE,TRUE,FALSE))
Rotates an array about two specified dimensions by any number of 90 degree turns
arot(a, rights = 1,pair=1:2)
arot(a, rights = 1,pair=1:2)
a |
The array to be rotated |
rights |
Integer; number of right angles to turn |
pair |
A two-element vector containing the dimensions to rotate with default meaning to rotate about the first two dimensions |
Function arot()
is not exactly equivalent to octave's
rotdim()
; in arot()
the order of the elements of
pair
matters because the rotation is clockwise when viewed
in the (pair[1],pair[2])
direction. Compare octave's
rotdim()
in which pair
is replaced with
sort(pair)
.
Note also that the rotation is about the first two dimensions
specified by pair
but if pair
has more than two elements
then these dimensions are also permuted.
Also note that function arot()
does not treat singleton
dimensions specially.
Robin K. S. Hankin
a <- array(1:16,rep(2,4)) arot(a)
a <- array(1:16,rep(2,4)) arot(a)
Given an array, returns an array of the same size whose elements
are sequentially numbered along the dimension.
arow(a, i)
arow(a, i)
a |
array to be converted |
i |
Number of the dimension |
An integer matrix with the same dimensions as a
, with element
being
.
This function is equivalent to, but faster than,
function(a,i){do.index(a,function(x){x[i]})}
. However, it is
much more complicated.
The function is nominally the same as slice.index()
but I have
not checked all the edge cases.
Robin K. S. Hankin
a <- array(0,c(3,3,2,2)) arow(a,2) (arow(a,1)+arow(a,2)+arow(a,3)+arow(a,4))%%2
a <- array(0,c(3,3,2,2)) arow(a,2) (arow(a,1)+arow(a,2)+arow(a,3)+arow(a,4))%%2
Transforms a magic square or magic hypercube into Frenicle's standard form
as.standard(a, toroidal = FALSE, one_minus=FALSE) is.standard(a, toroidal = FALSE, one_minus=FALSE)
as.standard(a, toroidal = FALSE, one_minus=FALSE) is.standard(a, toroidal = FALSE, one_minus=FALSE)
a |
Magic square or hypercube (array) to be tested or transformed |
toroidal |
Boolean, with default |
one_minus |
Boolean, with |
For a square, as.standard()
transforms a magic square into
Frenicle's standard form. The four numbers at each of
the four corners are determined. First, the square is rotated so the
smallest of the four is at the upper left. Then, element [1,2]
is compared with element[2,1]
and, if it is larger, the transpose
is taken.
Thus all eight rotated and transposed versions of a magic square have the same standard form.
The square returned by magic()
is in standard form.
For hypercubes, the algorithm is generalized. First, the hypercube is
reflected so that a[1,1,...,1,1]
is the smallest of the
corner elements (eg
a[1,n,1,...,1,1]
).
Next, aperm()
is called so that
a[1,1,...,1,2] < a[1,1,...,2,1] < ... < a[2,1,...,1,1]
.
Note that the inequalities are strict as hypercubes are assumed to be
normal. As of version 1.3-1, as.standard()
will accept arrays of
any dimension (ie arrays a
with minmax(dim(a))==FALSE
will
be handled sensibly).
An array with any dimension of extent zero is in standard form by definition; dimensions of length one are dropped.
If argument toroidal
is TRUE
, then the array a
is
translated using ashift()
so that a[1,1,...,1] == min(a)
.
Such translations preserve the properties of semimagicness and
pandiagonalness (but not magicness or associativity).
It is easier (for me at least) to visualise this by considering
two-dimensional arrays, tiling the plane with copies of a
.
Next, the array is shifted so that a[2,1,1,...,1] <
a[dim(a)[1],1,1,...,1]
and a[1,2,1,..,1] <
a[1,dim(a)[2],1,...,1]
and so on.
Then aperm()
is called as per the non-toroidal case above.
is.standard()
returns TRUE
if the magic square or
hypercube is in standard form. is.standard()
and
as.standard()
check for neither magicness nor normality (use
is.magic
and is.normal
for this).
There does not appear to be a way to make the third letter of “Frenicle” have an acute accent, as it should do.
Robin K. S. Hankin
is.standard(magic.2np1(4)) as.standard(magic.4n(3)) as.standard(magichypercube.4n(1,5)) ##non-square arrays: as.standard(magic(7)[1:3,]) ## Toroidal transforms preserve pandiagonalness: is.pandiagonal(as.standard(hudson(11))) ## but not magicness: is.magic(as.standard(magic(10),TRUE))
is.standard(magic.2np1(4)) as.standard(magic.4n(3)) as.standard(magichypercube.4n(1,5)) ##non-square arrays: as.standard(magic(7)[1:3,]) ## Toroidal transforms preserve pandiagonalness: is.pandiagonal(as.standard(hudson(11))) ## but not magicness: is.magic(as.standard(magic(10),TRUE))
Cilleruelo and Luca give a class of multiplicative magic squares whose behaviour is interesting.
cilleruelo(n, m)
cilleruelo(n, m)
n , m
|
Arguments: usually integers |
Returns a matrix.
Robin K. S. Hankin
Javier Cilleruelo and Florian Luca 2010, “On multiplicative magic squares”, The Electronic Journal of Combinatorics vol 17, number 8
is.magic(cilleruelo(5,6)) is.magic(cilleruelo(5,6),func=prod) f <- function(n){ jj <- sapply( seq(from=5,len=n), function(i){cilleruelo(i,i-4)} ) xM <- apply(jj,2,max) xm <- apply(jj,2,min) cbind(xM-xm , 5^(5/12)*xm^0.5 , 6*xm^0.5) } matplot(f(200),type='l',log='xy',xlab='n',ylab='') legend(x="topleft",legend=c("xM-xm","5^(5/12).xm^(1/2)","6xm^(1/2)"), lty=1:3,col=1:3)
is.magic(cilleruelo(5,6)) is.magic(cilleruelo(5,6),func=prod) f <- function(n){ jj <- sapply( seq(from=5,len=n), function(i){cilleruelo(i,i-4)} ) xM <- apply(jj,2,max) xm <- apply(jj,2,min) cbind(xM-xm , 5^(5/12)*xm^0.5 , 6*xm^0.5) } matplot(f(200),type='l',log='xy',xlab='n',ylab='') legend(x="topleft",legend=c("xM-xm","5^(5/12).xm^(1/2)","6xm^(1/2)"), lty=1:3,col=1:3)
Creates and tests for circulant matrices of any order
circulant(vec,doseq=TRUE) is.circulant(m,dir=rep(1,length(dim(m))))
circulant(vec,doseq=TRUE) is.circulant(m,dir=rep(1,length(dim(m))))
vec , doseq
|
In |
m |
In |
dir |
In |
A matrix is circulant if all major diagonals, including
broken diagonals, are uniform; ie if
when
(modulo
). The standard values to use give
1:n
for the top row.
In function is.circulant()
, for arbitrary dimensional arrays,
the default value for dir
checks that
a[v]==a[v+rep(1,d)]==...==a[v+rep((n-1),d)]
for all v
(that is, following lines parallel to the major diagonal); indices are
passed through process()
.
For general dir
, function is.circulant()
checks that
a[v]==a[v+dir]==a[v+2*dir]==...==a[v+(n-1)*d]
for all
v
.
A Toeplitz matrix is one in which a[i,j]=a[i',j']
whenever |i-j|=|i'-j'|
. See function toeplitz()
of the
stats
package for details.
If the elements of vec
are distinct, circulant()
will
return a latin square. Function latin()
is a synonym for
circulant()
, see latin.Rd
.
Robin K. S. Hankin
Arthur T. Benjamin and K. Yasuda. Magic “Squares” Indeed!, American Mathematical Monthly, vol 106(2), pp152-156, Feb 1999
circulant(5) circulant(2^(0:4)) is.circulant(circulant(5)) a <- outer(1:3,1:3,"+")%%3 is.circulant(a) is.circulant(a,c(1,2)) is.circulant(array(c(1:4,4:1),rep(2,3))) is.circulant(magic(5)%%5,c(1,-2))
circulant(5) circulant(2^(0:4)) is.circulant(circulant(5)) a <- outer(1:3,1:3,"+")%%3 is.circulant(a) is.circulant(a,c(1,2)) is.circulant(array(c(1:4,4:1),rep(2,3))) is.circulant(magic(5)%%5,c(1,-2))
A pantriagonal magic cube of order 4 originally due to Hendricks
data(cube2)
data(cube2)
Meaning of “pantriagonal” currently unclear
Hendricks
data(cube2) is.magichypercube(cube2) is.perfect(cube2)
data(cube2) is.magichypercube(cube2) is.perfect(cube2)
Returns broken diagonals of a magic square
diag.off(a, offset = 0, nw.se = TRUE)
diag.off(a, offset = 0, nw.se = TRUE)
a |
Square matrix |
offset |
vertical offset |
nw.se |
Boolean variable with |
Useful when testing for panmagic squares. The first element is always
the unbroken one (ie [1,1]
to [n,n]
if nw.se
is
TRUE
and [1,n]
to [n,1]
if nw.se
is
FALSE
.
Robin K. S. Hankin
diag.off(magic(10),nw.se=FALSE,offset=0) diag.off(magic(10),nw.se=FALSE,offset=1)
diag.off(magic(10),nw.se=FALSE,offset=0) diag.off(magic(10),nw.se=FALSE,offset=1)
Given a function f()
that takes a vector of indices, and an
array of arbitrary dimensions, apply f()
to the elements of a
do.index(a, f, ...)
do.index(a, f, ...)
a |
Array |
f |
Function that takes a vector argument of the same length as
|
... |
Further arguments supplied to |
Returns a matrix of the same dimensions as a
Tamas Papp suggests the one-liner
function(a, f, ...){array(apply(as.matrix(expand.grid(lapply(dim(a),seq_len),KEEP.OUT.ATTRS=FALSE)),1,f,...),dim(a))}
which is functionally identical to do.index()
; but
it is no faster than the version implemented in the package, and (IMO)
is harder to read.
Further note that function arow()
is much much faster than
do.index()
; it is often possible to rephrase a call to
do.index()
as a call to arow()
; do this where possible
unless the additional code opacity outweighs the speed savings.
Robin K. S. Hankin, with improvements by Gabor Grothendieck and Martin Maechler, via the R help list
a <- array(0,c(2,3,4)) b <- array(rpois(60,1),c(3,4,5)) f1 <- function(x){sum(x)} f2 <- function(x){sum((x-1)^2)} f3 <- function(x){b[t(x)]} f4 <- function(x){sum(x)%%2} f5 <- function(x,u){x[u]} do.index(a,f1) # should match arow(a,1)+arow(a,2)+arow(a,3) do.index(a,f2) do.index(a,f3) # same as apltake(b,dim(a)) do.index(a,f4) # Male/female toilets at NOC do.index(a,f5,2) # same as arow(a,2)
a <- array(0,c(2,3,4)) b <- array(rpois(60,1),c(3,4,5)) f1 <- function(x){sum(x)} f2 <- function(x){sum((x-1)^2)} f3 <- function(x){b[t(x)]} f4 <- function(x){sum(x)%%2} f5 <- function(x,u){x[u]} do.index(a,f1) # should match arow(a,1)+arow(a,2)+arow(a,3) do.index(a,f2) do.index(a,f3) # same as apltake(b,dim(a)) do.index(a,f4) # Male/female toilets at NOC do.index(a,f5,2) # same as arow(a,2)
Compares two magic squares according to Frenicle's method. Mnemonic is the old Fortran “.GT.” (for “Greater Than”) comparison et seq.
To compare magic square a
with magic square b
, their
elements are compared in rowwise order: a[1,1]
is compared with
b[1,1]
, then a[1,2]
with b[1,2]
, up to
a[n,n]
. Consider the first element that is different, say
[i,j]
. Then a<b
if a[i,j]<b[i,j]
.
The generalization to hypercubes is straightforward: comparisons are carried out natural order.
eq(m1, m2) ne(m1, m2) gt(m1, m2) lt(m1, m2) ge(m1, m2) le(m1, m2) m1 %eq% m2 m1 %ne% m2 m1 %gt% m2 m1 %lt% m2 m1 %ge% m2 m1 %le% m2
eq(m1, m2) ne(m1, m2) gt(m1, m2) lt(m1, m2) ge(m1, m2) le(m1, m2) m1 %eq% m2 m1 %ne% m2 m1 %gt% m2 m1 %lt% m2 m1 %ge% m2 m1 %le% m2
m1 |
First magic square |
m2 |
Second magic square |
Rather clumsy function definition due to the degenerate case of
testing two identical matrices (min(NULL)
is undefined).
The two arguments are assumed to be matrices of the same size. If not, an error is given.
Robin K. S. Hankin
magic(4) %eq% magic.4n(1) eq(magic(4) , magic.4n(1))
magic(4) %eq% magic.4n(1) eq(magic(4) , magic.4n(1))
Given an array, returns the first non-singleton dimension. Useful for emulating some of Matlab / Octave's multidimensional functions.
If n
is supplied, return the first n
nonsingleton dimensions.
fnsd(a,n)
fnsd(a,n)
a |
An array |
n |
Integer. Return the first |
Returns an integer vector with elements in the range 1
to
length(dim(a))
.
Treats zero-extent dimensions as singletons.
Case n=0
now treated sensibly (returns a zero-length vector).
Robin K. S. Hankin
a <- array(1:24,c(1,1,1,1,2,1,3,4)) fnsd(a) fnsd(a,2)
a <- array(1:24,c(1,1,1,1,2,1,3,4)) fnsd(a) fnsd(a,2)
Returns an elementwise as.integer
-ed array. All magic squares
should have integer elements.
force.integer(x)
force.integer(x)
x |
Array to be converted |
Function force.integer()
differs from as.integer()
as
the latter returns an integer vector, and the former returns an array
whose elements are integer versions of x
; see examples section
below.
Robin K. S. Hankin
a <- matrix(rep(1,4),2,2) force.integer(a) as.integer(a)
a <- matrix(rep(1,4),2,2) force.integer(a) as.integer(a)
A perfect magic cube due to Frankenstein
data(Frankenstein)
data(Frankenstein)
data(Frankenstein) is.perfect(Frankenstein)
data(Frankenstein) is.perfect(Frankenstein)
Various functionality for Hadamard matrices
sylvester(k) is.hadamard(m)
sylvester(k) is.hadamard(m)
k |
Function |
m |
matrix |
A Hadamard matrix is a square matrix whose entries are either +1 or -1 and whose rows are mutually orthogonal.
Robin K. S. Hankin
“Hadamard matrix.” Wikipedia, The Free Encyclopedia. 19 Jan 2009, 18:21 UTC. 20 Jan 2009
is.hadamard(sylvester(4)) image(sylvester(5))
is.hadamard(sylvester(4)) image(sylvester(5))
A perfect magic cube due to Hendricks
data(hendricks)
data(hendricks)
data(hendricks) is.perfect(hendricks)
data(hendricks) is.perfect(hendricks)
Returns a regular pandiagonal magic square of order
using a method developed by Hudson.
hudson(n = NULL, a = NULL, b = NULL)
hudson(n = NULL, a = NULL, b = NULL)
n |
Order of the square, |
a |
The first line of Hudson's |
b |
The first line of Hudson's |
Returns one member of a set of regular magic squares of order
. The set is of size
.
Note that n
is not checked for being in the form . If it is not the correct form, the square is magic
but not necessarily normal.
Robin K. S. Hankin
C. B. Hudson, On pandiagonal squares of order 6t +/- 1, Mathematics Magazine, March 1972, pp94-96
hudson(n=11) magicplot(hudson(n=11)) is.associative(hudson(n=13)) hudson(a=(2*1:13)%%13 , b=(8*1:13)%%13) all(replicate(10,is.magic(hudson(a=sample(13),b=sample(13)))))
hudson(n=11) magicplot(hudson(n=11)) is.associative(hudson(n=13)) hudson(a=(2*1:13)%%13 , b=(8*1:13)%%13) all(replicate(10,is.magic(hudson(a=sample(13),b=sample(13)))))
Returns TRUE
if the square is magic, semimagic, panmagic, associative,
normal. If argument give.answers
is TRUE
, also returns
additional information about the sums.
is.magic(m, give.answers = FALSE, func=sum, boolean=FALSE) is.panmagic(m, give.answers = FALSE, func=sum, boolean=FALSE) is.pandiagonal(m, give.answers = FALSE, func=sum, boolean=FALSE) is.semimagic(m, give.answers = FALSE, func=sum, boolean=FALSE) is.semimagic.default(m) is.associative(m) is.normal(m) is.sparse(m) is.mostperfect(m,give.answers=FALSE) is.2x2.correct(m,give.answers=FALSE) is.bree.correct(m,give.answers=FALSE) is.latin(m,give.answers=FALSE) is.antimagic(m, give.answers = FALSE, func=sum) is.totally.antimagic(m, give.answers = FALSE, func=sum) is.heterosquare(m, func=sum) is.totally.heterosquare(m, func=sum) is.sam(m) is.stam(m)
is.magic(m, give.answers = FALSE, func=sum, boolean=FALSE) is.panmagic(m, give.answers = FALSE, func=sum, boolean=FALSE) is.pandiagonal(m, give.answers = FALSE, func=sum, boolean=FALSE) is.semimagic(m, give.answers = FALSE, func=sum, boolean=FALSE) is.semimagic.default(m) is.associative(m) is.normal(m) is.sparse(m) is.mostperfect(m,give.answers=FALSE) is.2x2.correct(m,give.answers=FALSE) is.bree.correct(m,give.answers=FALSE) is.latin(m,give.answers=FALSE) is.antimagic(m, give.answers = FALSE, func=sum) is.totally.antimagic(m, give.answers = FALSE, func=sum) is.heterosquare(m, func=sum) is.totally.heterosquare(m, func=sum) is.sam(m) is.stam(m)
m |
The square to be tested |
give.answers |
Boolean, with |
func |
A function that is evaluated for each row, column, and unbroken diagonal |
boolean |
Boolean, with |
A semimagic square is one all of whose row sums equal all its columnwise sums (ie the magic constant).
A magic square is a semimagic square with the sum of both unbroken diagonals equal to the magic constant.
A panmagic square is a magic square all of whose broken diagonals sum to the magic constant. Ollerenshaw calls this a “pandiagonal” square.
A most-perfect square has all 2-by-2 arrays anywhere
within the square summing to where
; and all
pairs of integers
distant along the same major (NW-SE)
diagonal sum to
(note that the
used here differs
from Ollerenshaw's because her squares are numbered starting at
zero). The first condition is tested by
is.2x2.correct()
and
the second by is.bree.correct()
.
All most-perfect squares are panmagic.
A normal square is one that contains
consecutive integers (typically starting at 0 or 1).
A sparse matrix is one whose nonzero entries are consecutive integers, starting at 1.
An associative square (also regular square) is a magic square in which
.
Note that an associative semimagic square is magic; see also
is.square.palindromic()
. The definition extends to magic
hypercubes: a hypercube a
is associative if a+arev(a)
is constant.
An ultramagic square is pandiagonal and associative.
A latin square of size is one in
which each column and each row comprises the integers 1 to n (not
necessarily in that order). Function
is.latin()
is a wrapper
for is.latinhypercube()
because there is no natural way to
present the extra information given when give.answers
is
TRUE
in a manner consistent with the other functions
documented here.
An antimagic square is one whose row sums and column sums are consecutive integers; a totally antimagic square is one whose row sums, column sums, and two unbroken diagonals are consecutive integers. Observe that an antimagic square is not necessarily totally antimagic, and vice-versa.
A heterosquare has all rowsums and column sums distinct; a totally heterosquare [NB nonstandard terminology] has all rowsums, columnsums, and two long diagonals distinct.
A square is sam (or SAM) if it is sparse and
antimagic; it is stam (or STAM) if it is sparse and
totally antimagic. See documentation at SAM
.
Returns TRUE
if the square is semimagic, etc. and FALSE
if not.
If give.answers
is taken as an argument and is TRUE
,
return a list of at least five elements. The first element of the
list is the answer: it is TRUE
if the square is (semimagic,
magic, panmagic) and FALSE
otherwise. Elements 2-5 give the
result of a call to allsums()
, viz: rowwise and columnwise
sums; and broken major (ie NW-SE) and minor (ie NE-SW) diagonal sums.
Function is.bree.correct()
also returns the sums of
elements distant along a major diagonal
(
diag.sums
); and function is.2x2.correct()
returns the
sum of each submatrix (
tbt.sums
); for
other size windows use subsums()
directly.
Function is.mostperfect()
returns both of these.
Function is.semimagic.default()
returns TRUE
if the
argument is semimagic [with respect to sum()
] using a faster
method than is.semimagic()
.
Functions that take a func
argument apply that function to each
row, column, and diagonal as necessary. If func
takes its
default value of sum()
, the sum will be returned; if
prod()
, the product will be returned, and so on. There are
many choices for this argument that produce interesting tests;
consider func=max
, for example. With this, a “magic”
square is one whose row, sum and (unbroken) diagonals have identical
maxima. Thus diag(5)
is magic with respect to max()
,
but diag(6)
isn't.
Argument boolean
is designed for use with non-default values
for the func
argument; for example, a latin square is semimagic
with respect to func=function(x){all(diff(sort(x))==1)}
.
Function is.magic()
is vectorized; if a list is supplied, the
defaults are assumed.
Robin K. S. Hankin
https://mathworld.wolfram.com/MagicSquare.html
minmax
,is.perfect
,is.semimagichypercube
,sam
is.magic(magic(4)) is.magic(diag(7),func=max) # TRUE is.magic(diag(8),func=max) # FALSE stopifnot(is.magic(magic(3:8))) is.panmagic(panmagic.4()) is.panmagic(panmagic.8()) data(Ollerenshaw) is.mostperfect(Ollerenshaw) proper.magic <- function(m){is.magic(m) & is.normal(m)} proper.magic(magic(20))
is.magic(magic(4)) is.magic(diag(7),func=max) # TRUE is.magic(diag(8),func=max) # FALSE stopifnot(is.magic(magic(3:8))) is.panmagic(panmagic.4()) is.panmagic(panmagic.8()) data(Ollerenshaw) is.mostperfect(Ollerenshaw) proper.magic <- function(m){is.magic(m) & is.normal(m)} proper.magic(magic(20))
Returns TRUE
if a hypercube is semimagic, magic, perfect
is.semimagichypercube(a, give.answers=FALSE, func=sum, boolean=FALSE, ...) is.diagonally.correct(a, give.answers = FALSE, func=sum, boolean=FALSE, ...) is.magichypercube(a, give.answers = FALSE, func=sum, boolean=FALSE, ...) is.perfect(a, give.answers = FALSE, func=sum, boolean=FALSE) is.latinhypercube(a, give.answers=FALSE) is.alicehypercube(a,ndim,give.answers=FALSE, func=sum, boolean=FALSE)
is.semimagichypercube(a, give.answers=FALSE, func=sum, boolean=FALSE, ...) is.diagonally.correct(a, give.answers = FALSE, func=sum, boolean=FALSE, ...) is.magichypercube(a, give.answers = FALSE, func=sum, boolean=FALSE, ...) is.perfect(a, give.answers = FALSE, func=sum, boolean=FALSE) is.latinhypercube(a, give.answers=FALSE) is.alicehypercube(a,ndim,give.answers=FALSE, func=sum, boolean=FALSE)
a |
The hypercube (array) to be tested |
give.answers |
Boolean, with |
func |
Function to be applied across each dimension |
ndim |
In |
boolean |
Boolean, with |
... |
Further arguments passed to |
(Although apparently non-standard, here a hypercube is defined to have
dimension and order
—and thus has
elements).
A semimagic hypercube has all “rook's move” sums
equal to the magic constant (that is, each with
is equal to the magic constant for all values of the
's). In
is.semimagichypercube()
, if
give.answers
is TRUE
, the sums returned are in the
form of an array of dimension c(rep(n,d-1),d)
. The first
d-1
dimensions are the coordinates of the projection of the
summed elements onto the surface hypercube. The last dimension
indicates the dimension along which the sum was taken over.
Optional argument func
, defaulting to sum()
, indicates
the function to be taken over each of the d
dimensions.
Currently requires func
to return a scalar.
A Latin hypercube is one in which each line of elements
whose coordinates differ in only one dimension comprises the numbers
to
(or
to
), not necessarily in
that order. Each integer thus appears
times.
A magic hypercube is a semimagic hypercube with the
additional requirement that all long (ie
extreme point-to-extreme point) diagonals sum correctly. Correct
diagonal summation is tested by
is.diagonally.correct()
; by
specifying a function other than sum()
, criteria other than
the diagonals returning the correct sum may be tested.
An Alice hypercube is a different generalization of a semimagic square to higher dimensions. It is named for A. M. Hankin (“Alice”), who originally suggested it.
A semimagic hypercube has all one-dimensional subhypercubes (ie
lines) summing correctly. An Alice hypercube is one in which all
ndim
-dimensional subhypercubes have the same sum, where
ndim
is a fixed integer argument. Thus, if a
is a
hypercube of size ,
is.alicehypercube(a,ndim)
returns TRUE
if all n^{d-ndim}
subhypercubes have the
same sum.
For example, if a
is four-dimensional with dimension
then
is.alicehypercube(a,1)
is TRUE
if and only if a
is a semimagic hypercube: all
one-dimensional subhypercubes have the same sum. Then
is.alicehypercube(a,2)
is TRUE
if all 2-dimensional
subhypercubes (ie all of
the
squares, for example
a[,2,4,]
and
a[1,1,,]
) have the same sum. Then
is.alicehypercube(a,3)
means that all 3d subhypercubes (ie
all of the
cubes, for example
a[,,1,]
and
a[4,,,]
) have the same sum. For any hypercube a
,
is.alicehypercube(a,dim(a))
returns TRUE
.
A semimagic hypercube is an Alice hypercube for any value of
ndim
.
A perfect magic hypercube (use is.perfect()
) is
a magic hypercube with all nonbroken diagonals summing correctly.
This is a seriously restrictive requirement for high dimensional
hypercubes. As yet, this function does not take a
give.answers
argument.
A pandiagonal magic hypercube, also Nasik hypercube (or sometimes just a perfect hypercube) is a semimagic hypercube with all diagonals, including broken diagonals, summing correctly. This is not implemented.
The terminology in this area is pretty confusing.
In is.magichypercube()
, if argument give.answers=TRUE
then a list is returned. The first element of this list is Boolean
with TRUE
if the array is a magic hypercube. The second
element and third elements are answers
fromis.semimagichypercube()
and is.diagonally.correct()
respectively.
In is.diagonally.correct()
, if argument
give.answers=TRUE
, the function also returns an array of
dimension c(q,rep(2,d))
(that is,
elements), where
is the length of
func()
applied to a
long diagonal of a
(if , the first dimension is
dropped). If
, then in dimension
d
having index 1
means func()
is applied to elements of a
with the
dimension running over
1:n
; index 2
means to run over n:1
. If , the index of the first
dimension gives the index of
func()
, and subsequent dimensions
have indices of 1 or 2 as above and are interpreted in the same way.
An example of a function for which these two are not identical is given below.
If func=f
where f
is a function returning a vector of
length i
, is.diagonally.correct()
returns an array
out
of dimension c(i,rep(2,d))
, with
out[,i_1,i_2,...,i_d]
being f(x)
where x
is the
appropriate long diagonal. Thus the equalities
out[,i_1,i_2,...,i_d]==out[,3-i_1,3-i_2,...,3-i_d]
hold if and
only if identical(f(x),f(rev(x)))
is TRUE
for each long
diagonal (a condition met, for example, by sum()
but not by the
identity function or function(x){x[1]}
).
On this page, “subhypercube” is restricted to
rectangularly-oriented subarrays; see the note at subhypercubes
.
Not all subhypercubes of a magic hypercube are necessarily magic! (for
example, consider a 5-dimensional magic hypercube a
. The square
b
defined by a[1,1,1,,]
might not be magic: the diagonals
of b
are not covered by the definition of a magic hypercube).
Some subhypercubes of a magic hypercube are not even semimagic: see
below for an example.
Even in three dimensions, being perfect is pretty bad. Consider a
(ie three dimensional), cube. Say
a=magiccube.2np1(2)
. Then the square defined by
sapply(1:n,function(i){a[,i,6-i]}, simplify=TRUE)
, which is a
subhypercube of a
, is not even semimagic: the rowsums are
incorrect (the colsums must sum correctly because a
is magic).
Note that the diagonals of this square are two of the “extreme
point-to-point” diagonals of a
.
A pandiagonal magic hypercube (or sometimes just a perfect
hypercube) is semimagic and in addition the sums of all diagonals,
including broken diagonals, are correct. This is one seriously bad-ass
requirement. I reckon that is a total of correct summations. This
is not coded up yet; I can't see how to do it in anything like a
vectorized manner.
Robin K. S. Hankin
R. K. S. Hankin 2005. “Recreational mathematics with R: introducing the magic package”. R news, 5(1)
Richards 1980. “Generalized magic cubes”. Mathematics Magazine, volume 53, number 2, (March).
is.magic
, allsubhypercubes
, hendricks
library(abind) is.semimagichypercube(magiccube.2np1(1)) is.semimagichypercube(magichypercube.4n(1,d=4)) is.perfect(magichypercube.4n(1,d=4)) # Now try an array with minmax(dim(a))==FALSE: a <- abind(magiccube.2np1(1),magiccube.2np1(1),along=2) is.semimagichypercube(a,g=TRUE)$rook.sums # is.semimagichypercube() takes further arguments: mymax <- function(x,UP){max(c(x,UP))} not_mag <- array(1:81,rep(3,4)) is.semimagichypercube(not_mag,func=mymax,UP=80) # FALSE is.semimagichypercube(not_mag,func=mymax,UP=81) # TRUE a2 <- magichypercube.4n(m=1,d=4) is.diagonally.correct(a2) is.diagonally.correct(a2,g=TRUE)$diag.sums ## To extract corner elements (note func(1:n) != func(n:1)): is.diagonally.correct(a2,func=function(x){x[1]},g=TRUE)$diag.sums #Now for a subhypercube of a magic hypercube that is not semimagic: is.magic(allsubhypercubes(magiccube.2np1(1))[[10]]) data(hendricks) is.perfect(hendricks) #note that Hendricks's magic cube also has many broken diagonals summing #correctly: a <- allsubhypercubes(hendricks) ld <- function(a){length(dim(a))} jj <- unlist(lapply(a,ld)) f <- function(i){is.perfect(a[[which(jj==2)[i]]])} all(sapply(1:sum(jj==2),f)) #but this is NOT enough to ensure that it is pandiagonal (but I #think hendricks is pandiagonal). is.alicehypercube(magichypercube.4n(1,d=5),4,give.answers=TRUE)
library(abind) is.semimagichypercube(magiccube.2np1(1)) is.semimagichypercube(magichypercube.4n(1,d=4)) is.perfect(magichypercube.4n(1,d=4)) # Now try an array with minmax(dim(a))==FALSE: a <- abind(magiccube.2np1(1),magiccube.2np1(1),along=2) is.semimagichypercube(a,g=TRUE)$rook.sums # is.semimagichypercube() takes further arguments: mymax <- function(x,UP){max(c(x,UP))} not_mag <- array(1:81,rep(3,4)) is.semimagichypercube(not_mag,func=mymax,UP=80) # FALSE is.semimagichypercube(not_mag,func=mymax,UP=81) # TRUE a2 <- magichypercube.4n(m=1,d=4) is.diagonally.correct(a2) is.diagonally.correct(a2,g=TRUE)$diag.sums ## To extract corner elements (note func(1:n) != func(n:1)): is.diagonally.correct(a2,func=function(x){x[1]},g=TRUE)$diag.sums #Now for a subhypercube of a magic hypercube that is not semimagic: is.magic(allsubhypercubes(magiccube.2np1(1))[[10]]) data(hendricks) is.perfect(hendricks) #note that Hendricks's magic cube also has many broken diagonals summing #correctly: a <- allsubhypercubes(hendricks) ld <- function(a){length(dim(a))} jj <- unlist(lapply(a,ld)) f <- function(i){is.perfect(a[[which(jj==2)[i]]])} all(sapply(1:sum(jj==2),f)) #but this is NOT enough to ensure that it is pandiagonal (but I #think hendricks is pandiagonal). is.alicehypercube(magichypercube.4n(1,d=5),4,give.answers=TRUE)
Returns TRUE
if and only if sum(vec)==magic.constant(n,d=d))
is.ok(vec, n=length(vec), d=2)
is.ok(vec, n=length(vec), d=2)
vec |
Vector to be tested |
n |
Order of square or hypercube. Default assumes order is equal
to length of |
d |
Dimension of square or hypercube. Default of 2 corresponds to a square |
Robin K. S. Hankin
is.ok(magic(5)[1,])
is.ok(magic(5)[1,])
Implementation of various properties presented in a paper by Arthur T. Benjamin and K. Yasuda
is.square.palindromic(m, base=10, give.answers=FALSE) is.centrosymmetric(m) is.persymmetric(m)
is.square.palindromic(m, base=10, give.answers=FALSE) is.centrosymmetric(m) is.persymmetric(m)
m |
The square to be tested |
base |
Base of number expansion, defaulting to 10; not relevant for the “sufficient” part of the test |
give.answers |
Boolean, with |
The following tests apply to a general square matrix m
of size
.
A centrosymmetric square is one in which
a[i,j]=a[n+1-i,n+1-j]
; use is.centrosymmetric()
to test
for this (compare an associative square). Note that this
definition extends naturally to hypercubes: a hypercube a
is
centrosymmetric if all(a==arev(a))
.
A persymmetric square is one in which
a[i,j]=a[n+1-j,n+1-i]
; use is.persymmetric()
to test for
this.
A matrix is square palindromic if it satisfies the rather complicated conditions set out by Benjamin and Yasuda (see refs).
These functions return a list of Boolean variables whose value depends
on whether or not m
has the property in question.
If argument give.answers
takes the default value of
FALSE
, a Boolean value is returned that shows whether the
sufficient conditions are met.
If argument give.answers
is TRUE
, a detailed list is
given that shows the status of each individual test, both for the
necessary and sufficient conditions. The value of the second element
(named necessary
) is the status of their Theorem 1 on page 154.
Note that the necessary conditions do not depend on the base b
(technically, neither do the sufficient conditions, for being a square
palindrome requires the sums to match for every base b
.
In this implementation, “sufficient” is defined only with
respect to a particular base).
Every associative square is square palindromic, according to Benjamin and Yasuda.
Function is.square.palindromic()
does not yet take a
give.answers
argument as does, say, is.magic()
.
Robin K. S. Hankin
Arthur T. Benjamin and K. Yasuda. Magic “Squares” Indeed!, American Mathematical Monthly, vol 106(2), pp152-156, Feb 1999
is.square.palindromic(magic(3)) is.persymmetric(matrix(c(1,0,0,1),2,2)) #now try a circulant: a <- matrix(0,5,5) is.square.palindromic(circulant(10)) #should be TRUE
is.square.palindromic(magic(3)) is.persymmetric(matrix(c(1,0,0,1),2,2)) #now try a circulant: a <- matrix(0,5,5) is.square.palindromic(circulant(10)) #should be TRUE
Various functionality for generating random latin squares. Function
latin()
itself is a synonym for circulant()
and is
documented at circulant.Rd
.
incidence(a) is.incidence(a, include.improper) is.incidence.improper(a) unincidence(a) inc_to_inc(a) another_latin(a) another_incidence(i) rlatin(n,size=NULL,start=NULL,burnin=NULL)
incidence(a) is.incidence(a, include.improper) is.incidence.improper(a) unincidence(a) inc_to_inc(a) another_latin(a) another_incidence(i) rlatin(n,size=NULL,start=NULL,burnin=NULL)
a |
A latin square |
i |
An incidence array |
n , include.improper , size , start , burnin
|
Various control arguments; see details section |
Function latin()
, when called with a
Function incidence()
takes an integer array
(specifically, a latin square) and returns the incidence array as
per Jacobson and Matthew 1996
Function is.incidence()
tests for an array being an
incidence array; if argument include.improper
is TRUE
,
admit an improper array
Function is.incidence.improper()
tests for an array
being an improper array
Function unincidence()
converts an incidence array to a
latin square
Function another_latin()
takes a latin square and
returns a different latin square
Function another_incidence()
takes an incidence array
and returns a different incidence array
Function rlatin()
generates a (Markov) sequence of
random latin squares, arranged in a 3D array. Argument n
specifies how many to generate; argument size
gives the size
of latin squares generated; argument start
gives the start
latin square (it must be latin and is checked with
is.latin()
); argument burnin
gives the burn-in value
(number of Markov steps to discard).
Default value of NULL
for argument size
means to take
the size of argument start
; default value of NULL
for
argument start
means to use circulant(size)
As a special case, if argument size
and start
both
take the default value of NULL
, then argument n
is
interpreted as the size of a single random latin square to be
returned; the other arguments take their default values. This
ensures that “rlatin(n)
” returns a single random
latin square.
A latin square is an -by-
matrix containing integers
to
arranged so each number occurs exactly once in each
row and once in each column.
From Jacobson and Matthew 1996, an latin square
LS is equivalent to an
array A with
entries 0 or 1; the dimensions of A are identified with the rows,
columns and symbols of LS; a 1 appears in cell
of A iffi
the symbol
appears in row
, column
of LS.
Jacobson and Matthew call this an incidence cube.
The notation is readily generalized to latin hypercubes and
incidence()
is dimensionally vectorized.
An improper incidence cube is an incidence cube that includes a
single entry; all other entries must be 0 or 1; and all line
sums must equal 1.
Robin K. S. Hankin
M. T. Jacobson and P. Matthews 1996. “Generating uniformly distributed random latin squares”. Journal of Combinatorial Designs, volume 4, No. 6, pp405–437
rlatin(5) rlatin(n=2, size=4, burnin=10) # An example that allows one to optimize an objective function # [here f()] over latin squares: gr <- function(x){ another_latin(matrix(x,7,7)) } set.seed(0) index <- sample(49,20) f <- function(x){ sum(x[index])} jj <- optim(par=as.vector(latin(7)), fn=f, gr=gr, method="SANN", control=list(maxit=10)) best_latin <- matrix(jj$par,7,7) print(best_latin) print(f(best_latin)) #compare starting value: f(circulant(7))
rlatin(5) rlatin(n=2, size=4, burnin=10) # An example that allows one to optimize an objective function # [here f()] over latin squares: gr <- function(x){ another_latin(matrix(x,7,7)) } set.seed(0) index <- sample(49,20) f <- function(x){ sum(x[index])} jj <- optim(par=as.vector(latin(7)), fn=f, gr=gr, method="SANN", control=list(maxit=10)) best_latin <- matrix(jj$par,7,7) print(best_latin) print(f(best_latin)) #compare starting value: f(circulant(7))
Uses John Conway's lozenge algorithm to produce magic squares of odd order.
lozenge(m)
lozenge(m)
m |
magic square returned is of order |
Robin Hankin
lozenge(4) all(sapply(1:10,function(n){is.magic(lozenge(n))}))
lozenge(4) all(sapply(1:10,function(n){is.magic(lozenge(n))}))
Creates normal magic squares of any order . Uses
the appropriate method depending on n modulo 4.
magic(n)
magic(n)
n |
Order of magic square. If a vector, return a list whose
|
Calls either magic.2np1()
, magic.4n()
,
or magic.4np2()
depending on the value of n
. Returns a
magic square in standard format (compare the magic.2np1()
et seq,
which return the square as generated by the direct algorithm).
Robin K. S. Hankin
William H. Benson and Oswald Jacoby. New recreations with magic squares. Dover 1976.
magic.2np1
, magic.prime
,
magic.4np2
,
magic.4n
,lozenge
,
as.standard
, force.integer
magic(6) all(is.magic(magic(3:10))) ## The first eigenvalue of a magic square is equal to the magic constant: eigen(magic(10),FALSE,TRUE)$values[1] - magic.constant(10) ## The sum of the eigenvalues of a magic square after the first is zero: sum(eigen(magic(10),FALSE,TRUE)$values[2:10])
magic(6) all(is.magic(magic(3:10))) ## The first eigenvalue of a magic square is equal to the magic constant: eigen(magic(10),FALSE,TRUE)$values[1] - magic.constant(10) ## The sum of the eigenvalues of a magic square after the first is zero: sum(eigen(magic(10),FALSE,TRUE)$values[2:10])
Function to create magic squares of odd order
magic.2np1(m, ord.vec = c(-1, 1), break.vec = c(1, 0), start.point=NULL)
magic.2np1(m, ord.vec = c(-1, 1), break.vec = c(1, 0), start.point=NULL)
m |
creates a magic square of order |
ord.vec |
ordinary vector. Default value of |
break.vec |
break vector. Default of |
start.point |
Starting position for the method (ie coordinates of
unity). Default value of NULL corresponds to row 1, column |
Robin K. S. Hankin
Written up in loads of places. The method (at least with the default ordinary and break vectors) seems to have been known since at least the Renaissance.
Benson and Jacoby, and the Mathematica website, discuss the problem with nondefault ordinary and break vectors.
magic.2np1(1) f <- function(n){is.magic(magic.2np1(n))} all(sapply(1:20,f)) is.panmagic(magic.2np1(5,ord.vec=c(2,1),break.vec=c(1,3)))
magic.2np1(1) f <- function(n){is.magic(magic.2np1(n))} all(sapply(1:20,f)) is.panmagic(magic.2np1(5,ord.vec=c(2,1),break.vec=c(1,3)))
Produces an associative magic square of order using the
delta-x method.
magic.4n(m)
magic.4n(m)
m |
Order |
Robin K. S. Hankin
magic.4n(4) is.magic(magic.4n(5))
magic.4n(4) is.magic(magic.4n(5))
Produces a magic square of order using
Conway's “LUX” method
magic.4np2(m)
magic.4np2(m)
m |
returns a magic square of order |
I am not entirely happy with the method used: it's too complicated
Robin K. S. Hankin
https://mathworld.wolfram.com/MagicSquare.html
magic.4np2(1) is.magic(magic.4np2(3))
magic.4np2(1) is.magic(magic.4np2(3))
Returns all 90 regular magic squares of order 8
magic.8(...)
magic.8(...)
... |
ignored |
Returns an array of dimensions c(8,8,90)
of which each slice is
an 8-by-8 magic square.
Robin K. S. Hankin
https://www.grogono.com/magic/index.php
h <- magic.8() h[,,1] stopifnot(apply(h,3,is.magic))
h <- magic.8() h[,,1] stopifnot(apply(h,3,is.magic))
Returns the magic constant: that is, the common sum for all rows, columns and (broken) diagonals of a magic square or hypercube
magic.constant(n,d=2,start=1)
magic.constant(n,d=2,start=1)
n |
Order of the square or hypercube |
d |
Dimension of hypercube, defaulting to |
start |
Start value. Common values are 0 and 1 |
If n
is an integer, interpret this as the order of the square
or hypercube; return .
If n
is a square or hypercube, return the magic constant for
a normal array (starting at 1) of the same dimensions as n
.
Robin K. S. Hankin
magic.constant(4)
magic.constant(4)
Produces magic squares of prime order using the standard method
magic.prime(n,i=2,j=3)
magic.prime(n,i=2,j=3)
n |
The order of the square |
i |
row number of increment |
j |
column number of increment |
Claimed to work for order any prime with
, but
I've tried it (with the defaults for
i
and j
) for many
composite integers of the form and
and
found no exceptions; indeed, they all seem to be panmagic. It is not
clear to me when the process works and when it doesn't.
Robin K. S. Hankin
magic.prime(7) f <- function(n){is.magic(magic.prime(n))} all(sapply(6*1:30+1,f)) all(sapply(6*1:30-1,f)) is.magic(magic.prime(9,i=2,j=4),give.answers=TRUE) magic.prime(7,i=2,j=4)
magic.prime(7) f <- function(n){is.magic(magic.prime(n))} all(sapply(6*1:30+1,f)) all(sapply(6*1:30-1,f)) is.magic(magic.prime(9,i=2,j=4),give.answers=TRUE) magic.prime(7,i=2,j=4)
Gives a magic square that is a product of two magic squares.
magic.product(a, b, mat=NULL) magic.product.fast(a, b)
magic.product(a, b, mat=NULL) magic.product.fast(a, b)
a |
First magic square; if |
b |
as above |
mat |
Matrix, of same size as |
Function magic.product.fast()
does not take a mat
argument, and is equivalent to magic.product()
with mat
taking the default value of NULL
. The improvement in speed is
doubtful unless order(a)
order(b)
, in which
case there appears to be a substantial saving.
Robin K. S. Hankin
William H. Benson and Oswald Jacoby. New recreations with magic squares, Dover 1976 (and that paper in JRM)
magic.product(magic(3),magic(4)) magic.product(3,4) mat <- matrix(0,3,3) a <- magic.product(3,4,mat=mat) mat[1,1] <- 1 b <- magic.product(3,4,mat=mat) a==b
magic.product(magic(3),magic(4)) magic.product(3,4) mat <- matrix(0,3,3) a <- magic.product(3,4,mat=mat) mat[1,1] <- 1 b <- magic.product(3,4,mat=mat) a==b
Creates odd-order magic cubes
magiccube.2np1(m)
magiccube.2np1(m)
m |
n=2m+1 |
Robin K. S. Hankin
website
#try with m=3, n=2*3+1=7: m <-7 n <- 2*m+1 apply(magiccube.2np1(m),c(1,2),sum) apply(magiccube.2np1(m),c(1,3),sum) apply(magiccube.2np1(m),c(2,3),sum) #major diagonal checks out: sum(magiccube.2np1(m)[matrix(1:n,n,3)]) #now other diagonals: b <- c(-1,1) f <- function(dir,v){if(dir>0){return(v)}else{return(rev(v))}} g <- function(jj){sum(magiccube.2np1(m)[sapply(jj,f,v=1:n)])} apply(expand.grid(b,b,b),1,g) #each diagonal twice, once per direction.
#try with m=3, n=2*3+1=7: m <-7 n <- 2*m+1 apply(magiccube.2np1(m),c(1,2),sum) apply(magiccube.2np1(m),c(1,3),sum) apply(magiccube.2np1(m),c(2,3),sum) #major diagonal checks out: sum(magiccube.2np1(m)[matrix(1:n,n,3)]) #now other diagonals: b <- c(-1,1) f <- function(dir,v){if(dir>0){return(v)}else{return(rev(v))}} g <- function(jj){sum(magiccube.2np1(m)[sapply(jj,f,v=1:n)])} apply(expand.grid(b,b,b),1,g) #each diagonal twice, once per direction.
A list of four elements listing each fundamentally different magic cube of order 3
data(magiccubes)
data(magiccubes)
Originally discovered by Hendricks
data(magiccubes) magiccubes$a1 sapply(magiccubes,is.magichypercube)
data(magiccubes) magiccubes$a1 sapply(magiccubes,is.magichypercube)
Returns magic hypercubes of order 4n and any dimension.
magichypercube.4n(m, d = 3)
magichypercube.4n(m, d = 3)
m |
Magic hypercube produced of order |
d |
Dimensionality of cube |
Uses a rather kludgy (but vectorized) method. I am not 100% sure that the method does in fact produce magic squares for all orders and dimensions.
Robin K. S. Hankin
magichypercube.4n(1,d=4) magichypercube.4n(2,d=3)
magichypercube.4n(1,d=4) magichypercube.4n(2,d=3)
A nice way to graphically represent normal magic squares. Lines are
plotted to join successive numbers from 1 to .
Many magic squares have attractive such plots.
magicplot(m, number = TRUE, do.circuit = FALSE, ...)
magicplot(m, number = TRUE, do.circuit = FALSE, ...)
m |
Magic square to be plotted. |
number |
Boolean variable with |
do.circuit |
Boolean variable with |
... |
Extra parameters passed to |
Robin K. S. Hankin
magicplot(magic.4n(2))
magicplot(magic.4n(2))
Returns TRUE
if and only if all elements of a vector are identical.
minmax(x, tol=1e-6)
minmax(x, tol=1e-6)
x |
Vector to be tested |
tol |
Relative tolerance allowed |
If x
is an integer, exact equality is required. If real or
complex, a relative tolerance of tol
is required. Note that
functions such as is.magic()
and is.semimagichypercube()
use the default value for tol
. To change this,
define a new Boolean function that tests the sum to the required
tolerance, and set boolean
to TRUE
Robin K. S. Hankin
is.magic()
data(Ollerenshaw) minmax(subsums(Ollerenshaw,2)) #should be TRUE, as per is.2x2.correct()
data(Ollerenshaw) minmax(subsums(Ollerenshaw,2)) #should be TRUE, as per is.2x2.correct()
Returns a square of order that has been claimed to
be magic, but isn't.
notmagic.2n(m)
notmagic.2n(m)
m |
Order of square is |
This took me a whole evening to code up. And I was quite pleased with the final vectorized form: it matches Andrews's (8 by 8) example square exactly. What a crock
Robin K. S. Hankin
“Magic Squares and Cubes”, Andrews, (book)
notmagic.2n(4) is.magic(notmagic.2n(4)) is.semimagic(notmagic.2n(4))
notmagic.2n(4) is.magic(notmagic.2n(4)) is.semimagic(notmagic.2n(4))
Solves the N queens problem for any n-by-n board.
bernhardsson(n) bernhardssonA(n) bernhardssonB(n)
bernhardsson(n) bernhardssonA(n) bernhardssonB(n)
n |
Size of the chessboard |
Uses a direct transcript of Bo Bernhardsson's method.
All solutions (up to reflection and translation) for the 8-by-8 case given in the examples.
Robin K. S. Hankin
Bo Bernhardsson 1991. “Explicit solutions to the
n-queens problem for all ”. SIGART Bull., 2(2):7
Weisstein, Eric W. “Queens Problem” From MathWorld–A Wolfram Web Resource https://mathworld.wolfram.com/QueensProblem.html
bernhardsson(7) a <- matrix( c(3,6,2,7,1,4,8,5, 2,6,8,3,1,4,7,5, 6,3,7,2,4,8,1,5, 3,6,8,2,4,1,7,5, 4,8,1,3,6,2,7,5, 7,2,6,3,1,4,8,5, 2,6,1,7,4,8,3,5, 1,6,8,3,7,4,2,5, 1,5,8,6,3,7,2,4, 2,4,6,8,3,1,7,5, 6,3,1,8,4,2,7,5, 4,6,8,2,7,1,3,5) ,8,12) out <- array(0L,c(8,8,12)) for(i in 1:12){ out[cbind(seq_len(8),a[,i],i)] <- 1L }
bernhardsson(7) a <- matrix( c(3,6,2,7,1,4,8,5, 2,6,8,3,1,4,7,5, 6,3,7,2,4,8,1,5, 3,6,8,2,4,1,7,5, 4,8,1,3,6,2,7,5, 7,2,6,3,1,4,8,5, 2,6,1,7,4,8,3,5, 1,6,8,3,7,4,2,5, 1,5,8,6,3,7,2,4, 2,4,6,8,3,1,7,5, 6,3,1,8,4,2,7,5, 4,6,8,2,7,1,3,5) ,8,12) out <- array(0L,c(8,8,12)) for(i in 1:12){ out[cbind(seq_len(8),a[,i],i)] <- 1L }
A 12-by-12 most perfect square due to Ollerenshaw
data(Ollerenshaw)
data(Ollerenshaw)
“Most perfect pandiagonal magic squares”, K. Ollerenshaw and D. Bree, 1998, Institute of Mathematics and its applications
data(Ollerenshaw) is.mostperfect(Ollerenshaw)
data(Ollerenshaw) is.mostperfect(Ollerenshaw)
Creates all fundamentally different panmagic squares of order 4.
panmagic.4(vals = 2^(0:3))
panmagic.4(vals = 2^(0:3))
vals |
a length four vector giving the values which are combined
in each of the |
Robin K. S. Hankin
https://www.grogono.com/magic/index.php
panmagic.4() panmagic.4(2^c(1,3,2,0)) panmagic.4(10^(0:3))
panmagic.4() panmagic.4(2^c(1,3,2,0)) panmagic.4(10^(0:3))
Produce a panmagic square of order or
using a
classical method
panmagic.6npm1(n) panmagic.6np1(m) panmagic.6nm1(m) panmagic.4n(m)
panmagic.6npm1(n) panmagic.6np1(m) panmagic.6nm1(m) panmagic.4n(m)
m |
Function Function |
n |
Function |
Function panmagic.6npm1(n)
will return a square if n
is
not of the form , but it is not necessarily
magic.
Robin K. S. Hankin
“Pandiagonal magic square.” Wikipedia, The Free Encyclopedia. Wikimedia Foundation, Inc. 13 February 2013
panmagic.6np1(1) panmagic.6npm1(13) all(sapply(panmagic.6np1(1:3),is.panmagic))
panmagic.6np1(1) panmagic.6npm1(13) all(sapply(panmagic.6np1(1:3),is.panmagic))
Produces each of a wide class of order 8 panmagic squares
panmagic.8(chosen = 1:6, vals = 2^(0:5))
panmagic.8(chosen = 1:6, vals = 2^(0:5))
chosen |
Which of the magic carpets are used in combination |
vals |
The values combined to produce the magic square. Choosing
|
Not all choices for chosen
give normal magic squares. There
seems to be no clear pattern. See website in references for details.
Robin K. S. Hankin
https://www.grogono.com/magic/index.php
is.panmagic(panmagic.8(chosen=2:7)) is.normal(panmagic.8(chosen=2:7)) is.normal(panmagic.8(chosen=c(1,2,3,6,7,8))) #to see the twelve basis magic carpets, set argument 'chosen' to each #integer from 1 to 12 in turn, with vals=1: panmagic.8(chosen=1,vals=1)-1 image(panmagic.8(chosen=12,vals=1))
is.panmagic(panmagic.8(chosen=2:7)) is.normal(panmagic.8(chosen=2:7)) is.normal(panmagic.8(chosen=c(1,2,3,6,7,8))) #to see the twelve basis magic carpets, set argument 'chosen' to each #integer from 1 to 12 in turn, with vals=1: panmagic.8(chosen=1,vals=1)-1 image(panmagic.8(chosen=12,vals=1))
A perfect cube of order 5, due to Trump and Boyer
data(perfectcube5)
data(perfectcube5)
data(perfectcube5) is.perfect(perfectcube5)
data(perfectcube5) is.perfect(perfectcube5)
A perfect cube of order 6 originally due to Trump
data(perfectcube6)
data(perfectcube6)
data(perfectcube6) is.perfect(perfectcube6) is.magichypercube(perfectcube6[2:5,2:5,2:5])
data(perfectcube6) is.perfect(perfectcube6) is.magichypercube(perfectcube6[2:5,2:5,2:5])
Forces an (integer) array to have entries in the range 1-n, by (i) taking the entries modulo n, then (ii) setting zero elements to n. Useful for modifying index arrays into a form suitable for use with magic squares.
process(x, n)
process(x, n)
x |
Index array to be processed |
n |
Modulo of arithmetic to be used |
Robin K. S. Hankin
# extract the broken diagonal of magic.2np1(4) that passes # through element [1,5]: a <- magic.2np1(4) index <- t(c(1,5)+rbind(1:9,1:9)) a[process(index,9)]
# extract the broken diagonal of magic.2np1(4) that passes # through element [1,5]: a <- magic.2np1(4) index <- t(c(1,5)+rbind(1:9,1:9)) a[process(index,9)]
Recursively apply a permutation to a vector an arbitrary number of times. Negative times mean apply the inverse permutation.
recurse(perm, i, start = seq_along(perm))
recurse(perm, i, start = seq_along(perm))
perm |
Permutation (integers 1 to |
start |
Start vector to be permuted |
i |
Number of times to apply the permutation. |
Robin K. S. Hankin
n <- 15 noquote(recurse(start=letters[1:n],perm=shift(1:n),i=0)) noquote(recurse(start=letters[1:n],perm=shift(1:n),i=1)) noquote(recurse(start=letters[1:n],perm=shift(1:n),i=2)) noquote(recurse(start=letters[1:n],perm=sample(n),i=1)) noquote(recurse(start=letters[1:n],perm=sample(n),i=2))
n <- 15 noquote(recurse(start=letters[1:n],perm=shift(1:n),i=0)) noquote(recurse(start=letters[1:n],perm=shift(1:n),i=1)) noquote(recurse(start=letters[1:n],perm=shift(1:n),i=2)) noquote(recurse(start=letters[1:n],perm=sample(n),i=1)) noquote(recurse(start=letters[1:n],perm=sample(n),i=2))
Produces an antimagic square of order using
Gray and MacDougall's method.
sam(m, u, A=NULL, B=A)
sam(m, u, A=NULL, B=A)
m |
Order of the magic square (not “ |
u |
See details section |
A , B
|
Start latin squares, with default |
In Gray's terminology, sam(m,n)
produces a
.
The method is not vectorized.
To test for these properties, use functions such as
is.antimagic()
, documented under is.magic.Rd
.
Robin K. S. Hankin
I. D. Gray and J. A. MacDougall 2006. “Sparse anti-magic squares and vertex-magic labelings of bipartite graphs”, Discrete Mathematics, volume 306, pp2878-2892
sam(6,2) jj <- matrix(c( 5, 2, 3, 4, 1, 3, 5, 4, 1, 2, 2, 3, 1, 5, 4, 4, 1, 2, 3, 5, 1, 4, 5, 2, 3),5,5) is.sam(sam(5,2,B=jj))
sam(6,2) jj <- matrix(c( 5, 2, 3, 4, 1, 3, 5, 4, 1, 2, 2, 3, 1, 5, 4, 4, 1, 2, 3, 5, 1, 4, 5, 2, 3),5,5) is.sam(sam(5,2,B=jj))
Shift origin of arrays and vectors.
shift(x, i=1) ashift(a, v=rep(1,length(dim(a))))
shift(x, i=1) ashift(a, v=rep(1,length(dim(a))))
x |
Vector to be shifted |
i |
Number of places elements to be shifted, with default value of 1 meaning to put the last element first, followed by the first element, then the second, etc |
a |
Array to be shifted |
v |
Vector of numbers to be shifted in each dimension, with
default value corresponding to |
Function shift(x,n)
returns where
is the
permutation
.
Function ashift
is the array generalization of this: the
dimension is shifted by
v[n]
. In other
words,
ashift(a,v)=a[shift(1:(dim(a)[1]),v[1]),...,shift(1:(dim(a)[n]),v[n])]
.
It is named by analogy with abind()
and aperm()
.
This function is here because a shifted semimagic square or hypercube is semimagic and a shifted pandiagonal square or hypercube is pandiagonal (note that a shifted magic square is not necessarily magic, and a shifted perfect hypercube is not necessarily perfect).
Robin K. S. Hankin
shift(1:10,3) m <- matrix(1:100,10,10) ashift(m,c(1,1)) ashift(m,c(0,1)) #note columns shifted by 1, rows unchanged. ashift(m,dim(m)) #m unchanged (Mnemonic).
shift(1:10,3) m <- matrix(1:100,10,10) ashift(m,c(1,1)) ashift(m,c(0,1)) #note columns shifted by 1, rows unchanged. ashift(m,dim(m)) #m unchanged (Mnemonic).
Uses Strachey's algorithm to produce magic squares of singly-even order.
strachey(m, square=magic.2np1(m))
strachey(m, square=magic.2np1(m))
m |
magic square produced of order |
square |
magic square of order |
Strachey's method essentially places four identical magic squares
of order together to form one of
. Then
is added to each
square; and finally, certain squares are swapped from the top
subsquare to the bottom subsquare.
See the final example for an illustration of how this works, using a zero matrix as the submatrix. Observe how some 75s are swapped with some 0s, and some 50s with some 25s.
Robin K. S. Hankin
strachey(3) strachey(2,square=magic(5)) strachey(2,square=magic(5)) %eq% strachey(2,square=t(magic(5))) #should be FALSE #Show which numbers have been swapped: strachey(2,square=matrix(0,5,5)) #It's still magic, but not normal: is.magic(strachey(2,square=matrix(0,5,5)))
strachey(3) strachey(2,square=magic(5)) strachey(2,square=magic(5)) %eq% strachey(2,square=t(magic(5))) #should be FALSE #Show which numbers have been swapped: strachey(2,square=matrix(0,5,5)) #It's still magic, but not normal: is.magic(strachey(2,square=matrix(0,5,5)))
Returns the sums of submatrices of an array; multidimensional moving window averaging
subsums(a,p,func="sum",wrap=TRUE, pad=0)
subsums(a,p,func="sum",wrap=TRUE, pad=0)
a |
Array to be analysed |
p |
Argument specifying the subarrays to be summed. If a vector
of length greater than one,
it is assumed to be of length If not a vector, is assumed to be a matrix with |
func |
Function to be applied over the elements of the moving
window. Default value of If |
wrap |
Boolean, with default value of If |
pad |
If |
The offset is specified so that allsums(a,v)[1,1,...,1]=
sum(a[1:v[1],1:v[2],...,1:v[n]])
, where n=length(dim(a))
.
Function subsums()
is used in is.2x2.correct()
and
is.diagonally.correct()
.
Robin K. S. Hankin
data(Ollerenshaw) subsums(Ollerenshaw,c(2,2)) subsums(Ollerenshaw[,1:10],c(2,2)) subsums(Ollerenshaw, matrix(c(0,6),2,2)) # effectively, is.bree.correct() # multidimensional example. a <- array(1,c(3,4,2)) subsums(a,2) # note that p=2 is equivalent to p=c(2,2,2); # all elements should be identical subsums(a,2,wrap=FALSE) #note "middle" elements > "outer" elements #Example of nondefault function: x <- matrix(1:42,6,7) subsums(x,2,func="max",pad=Inf,wrap=TRUE) subsums(x,2,func="max",pad=Inf,wrap=FALSE)
data(Ollerenshaw) subsums(Ollerenshaw,c(2,2)) subsums(Ollerenshaw[,1:10],c(2,2)) subsums(Ollerenshaw, matrix(c(0,6),2,2)) # effectively, is.bree.correct() # multidimensional example. a <- array(1,c(3,4,2)) subsums(a,2) # note that p=2 is equivalent to p=c(2,2,2); # all elements should be identical subsums(a,2,wrap=FALSE) #note "middle" elements > "outer" elements #Example of nondefault function: x <- matrix(1:42,6,7) subsums(x,2,func="max",pad=Inf,wrap=TRUE) subsums(x,2,func="max",pad=Inf,wrap=FALSE)
For a given magic square, returns one of the eight squares whose Frenicle's standard form is the same.
transf(a, i)
transf(a, i)
a |
Magic square |
i |
Integer, considered modulo 8. Specifying 0-7 gives a different magic square |
Robin K. S. Hankin
a <- magic(3) identical(transf(a,0),a) transf(a,1) transf(a,2) transf(a,1) %eq% transf(a,7)
a <- magic(3) identical(transf(a,0),a) transf(a,1) transf(a,2) transf(a,1) %eq% transf(a,7)