
Package: lorentz (via r-universe)
September 17, 2024

Type Package

Title The Lorentz Transform in Relativistic Physics

Version 1.1-2

Suggests knitr,testthat,rmarkdown,covr

Imports quadform,tensor,magic,magrittr

Maintainer Robin K. S. Hankin <hankin.robin@gmail.com>

Description The Lorentz transform in special relativity; also the
gyrogroup structure of three-velocities. Performs active and
passive transforms and has the ability to use units in which
the speed of light is not unity. Includes some experimental
functionality for celerity and rapidity. For general
relativity, see the 'schwarzschild' package.

License GPL-3

Encoding UTF-8

VignetteBuilder knitr

URL https://github.com/RobinHankin/lorentz,

https://robinhankin.github.io/lorentz/

BugReports https://github.com/RobinHankin/lorentz/issues

RoxygenNote 7.2.3

Repository https://robinhankin.r-universe.dev

RemoteUrl https://github.com/robinhankin/lorentz

RemoteRef HEAD

RemoteSha 4e406b53e538db977d22086c5aebd958a892153a

Contents
lorentz-package . 2
as.matrix.3vel . 3
boost . 4

1

https://github.com/RobinHankin/lorentz
https://robinhankin.github.io/lorentz/
https://github.com/RobinHankin/lorentz/issues

2 lorentz-package

c.3vel . 7
celerity . 8
comm_fail . 10
coordnames . 11
cosines . 12
Extract.3vel . 12
fourmom . 13
fourvel . 15
galileo . 16
gam . 17
gyr . 19
Ops.3vel . 20
photon . 22
print.3vel . 24
r3vel . 24
reflect . 26
seq.3vel . 27
sol . 28
threevel . 30
transform . 31

Index 33

lorentz-package The Lorentz Transform in Relativistic Physics

Description

The Lorentz transform in special relativity; also the gyrogroup structure of three-velocities. Per-
forms active and passive transforms and has the ability to use units in which the speed of light is
not unity. Includes some experimental functionality for celerity and rapidity. For general relativity,
see the ’schwarzschild’ package.

Details

The DESCRIPTION file: This package was not yet installed at build time.

Index: This package was not yet installed at build time.

Author(s)

Robin K. S. Hankin [aut, cre] (<https://orcid.org/0000-0001-5982-0415>)

Maintainer: Robin K. S. Hankin <hankin.robin@gmail.com>

as.matrix.3vel 3

References

• Ungar 2006. “Thomas precession: a kinematic effect...”. European Journal of Physics,
27:L17-L20.

• https://www.youtube.com/watch?v=9Y9CxiukURw&index=68&list=PL9_n3Tqzq9iWtgD8POJFdnVUCZ_
zw6OiB

Examples

u <- as.3vel(c(0.3,0.6,-0.1)) # u is a three-velocity
gam(u) # relativistic gamma term for u
U <- as.4vel(u) # U is a four-velocity
B1 <- boost(u) # B1 is the Lorentz transform matrix for u
B1 %*% c(1,0,0,0) # Lorentz transform of zero 4-velocity (=-u)

B2 <- boost(as.3vel(c(-0.1,0.8,0.3)))
B3 <- boost(as.3vel(c(-0.1,0.1,0.9))) # more boosts

Bi <- B1 %*% B2 # Bi is the boost for successive Lorentz transforms

pureboost(Bi) # Decompose Bi into a pure boost...
orthog(Bi) # and an orthogonal matrix

Bj <- B2 %*% B1 # B1 and B2 do not commute...

(B1 %*% B2) %*% B3
B1 %*% (B2 %*% B3) # ...but composition *is* associative

Three velocities and the gyrogroup

Create some random three-velocities:

u <- r3vel(10)
v <- r3vel(10)
w <- r3vel(10)

u+v
v+u # Three-velocity addition is not commutative...

u+(v+w) # ... nor associative
(u+v)+w

as.matrix.3vel Coerce 3-vectors and 4-vectors to a matrix

https://www.youtube.com/watch?v=9Y9CxiukURw&index=68&list=PL9_n3Tqzq9iWtgD8POJFdnVUCZ_zw6OiB
https://www.youtube.com/watch?v=9Y9CxiukURw&index=68&list=PL9_n3Tqzq9iWtgD8POJFdnVUCZ_zw6OiB

4 boost

Description

Coerce 3-vectors and 4-vectors to a matrix. A convenience wrapper for unclass()

Usage

S3 method for class '3vel'
as.matrix(x, ...)
S3 method for class '4vel'
as.matrix(x, ...)

Arguments

x Object of class 3vel or 4vel

... Further arguments (currently ignored)

Author(s)

Robin K. S. Hankin

Examples

as.matrix(r3vel(5))
as.matrix(r4vel(5))

boost Lorentz transformations

Description

Lorentz transformations: boosts and rotations

Usage

boost(u=0)
rot(u,v,space=TRUE)
is.consistent.boost(L, give=FALSE, TOL=1e-10)
is.consistent.boost.galilean(L, give=FALSE, TOL=1e-10)
pureboost(L,include_sol=TRUE)
orthog(L)
pureboost.galilean(L, tidy=TRUE)
orthog.galilean(L)

boost 5

Arguments

u, v Three-velocities, coerced to class 3vel. In function boost(), if u takes the
special default value 0, this is interpreted as zero three velocity

L Lorentz transform expressed as a 4× 4 matrix
TOL Numerical tolerance
give Boolean with TRUE meaning to return the transformed metric tensor (which

should be the flat-space eta(); qv) and default FALSE meaning to return whether
the matrix is a consistent boost or not

space Boolean, with default TRUE meaning to return just the spatial component of the
rotation matrix and FALSE meaning to return the full 4×4 matrix transformation

tidy In pureboost.galilean(), Boolean with default TRUE meaning to return a
“tidy” boost matrix with spatial components forced to be a 3× 3 identity matrix

include_sol In function pureboost(), Boolean with default TRUE meaning to correctly ac-
count for the speed of light, and FALSE meaning to assume c = 1. See details

Details

Arguments u,v are coerced to three-velocities.

A rotation-free Lorentz transformation is known as a boost (sometimes a pure boost), here ex-
pressed in matrix form. Pure boost matrices are symmetric if c = 1. Function boost(u) returns a
4× 4 matrix giving the Lorentz transform of an arbitrary three-velocity u.

Boosts can be successively applied with regular matrix multiplication. However, composing two
successive pure boosts does not in general return a pure boost matrix: the product is not symmetric
in general. Also note that boost matrices do not commute. The resulting matrix product represents
a Lorentz transform.

It is possible to decompose a Lorentz transform L into a pure boost and a spatial rotation. Thus
L = OP where O is an orthogonal matrix and P a pure boost matrix; these are returned by functions
orthog() and pureboost() respectively. If the speed of light is not equal to 1, the functions still
work but can be confusing.

Functions pureboost.galilean() and orthog.galilean() are the Newtonian equivalents of
pureboost() and orthog(), intended to be used when the speed of light is infinite (which causes
problems for the relativistic functions).

As noted above, the composition of two pure Lorentz boosts is not necessarily pure. If we have two
successive boosts corresponding to u and v, then the composed boost may be decomposed into a
pure boost of boost(u+v) and a rotation of rot(u,v).

The reason argument include_sol exists is that function orthog() needs to call pureboost() in
an environment where we pretend that c = 1.

Value

Function boost() returns a 4× 4 matrix; function rot() returns an orthogonal matrix.

Note

Function rot() uses crossprod() for efficiency reasons but is algebraically equivalent to

boost(-u-v) %*% boost(u) %*% boost(v).

6 boost

Author(s)

Robin K. S. Hankin

References

• Ungar 2006. “Thomas precession: a kinematic effect. . . ”. European Journal of Physics,
27:L17-L20

• Sbitneva 2001. “Nonassociative geometry of special relativity”. International Journal of The-
oretical Physics, volume 40, number 1, pages 359–362

• Wikipedia contributors 2018. “Wigner rotation”, Wikipedia, The Free Encyclopedia. https:
//en.wikipedia.org/w/index.php?title=Wigner_rotation&oldid=838661305. Online;
accessed 23 August 2018

Examples

boost(as.3vel(c(0.4,-0.2,0.1)))

u <- r3vel(1)
v <- r3vel(1)
w <- r3vel(1)

boost(u) - solve(boost(-u)) # should be zero

boost(u) %*% boost(v) # not a pure boost (not symmetrical)
boost(u+v) # not the same!
boost(v+u) # also not the same!

u+v # returns a three-velocity

boost(u) %*% boost(v) %*% boost(w) # associative, no brackets needed
boost(u+(v+w)) # not the same!
boost((u+v)+w) # also not the same!

rot(u,v)
rot(v,u) # transpose (=inverse) of rot(u,v)

rot(u,v,FALSE) %*% boost(v) %*% boost(u)
boost(u+v) # should be the same.

orthog(boost(u) %*% boost(v)) - rot(u,v,FALSE) # zero to numerical precision
pureboost(boost(v) %*% boost(u)) - boost(u+v) # ditto

Define a random-ish Lorentz transform
L <- boost(r3vel(1)) %*% boost(r3vel(1)) %*% boost(r3vel(1))

check it:

https://en.wikipedia.org/w/index.php?title=Wigner_rotation&oldid=838661305
https://en.wikipedia.org/w/index.php?title=Wigner_rotation&oldid=838661305

c.3vel 7

Not run: # needs emulator package
quad.form(eta(),L) # should be eta()

End(Not run)

More concisely:
is.consistent.boost(L) # should be TRUE

Decompose L into a rotation and a pure boost:
U <- orthog(L)
P <- pureboost(L)

L - U %*% P # should be zero (L = UP)
crossprod(U) # should be identity (U is orthogonal)
P - t(P) # should be zero (P is symmetric)

First row of P should be a consistent 4-velocity:
is.consistent.4vel(P[1,,drop=FALSE],give=TRUE)

c.3vel Combine vectors of three-velocities and four-velocities into a single
vector

Description

Combines its arguments recursively to form a vector of three velocities or four velocities

Usage

S3 method for class '3vel'
c(...)
S3 method for class '3cel'
c(...)
S3 method for class '4vel'
c(...)

Arguments

... Vectors of three-velocities

Details

Returns a vector of three-velocities or four-velocities. These are stored as three- or four- column
matrices; each row is a velocity.

Names are inherited from the behaviour of cbind(), not c().

8 celerity

Note

This function is used extensively in inst/distributive_search.R.

For “c” as in celerity or speed of light, see sol().

Author(s)

Robin K. S. Hankin

See Also

sol

Examples

c(r3vel(3),r3vel(6,0.99))

celerity Celerity and rapidity

Description

The celerity and rapidity of an object (experimental functionality)

Usage

S3 method for class '3vel'
celerity(u)
S3 method for class '4vel'
celerity(u)
celerity_ur(d)
S3 method for class '3vel'
rapidity(u)
S3 method for class '4vel'
rapidity(u)
rapidity_ur(d)
as.3cel(x)
cel_to_vel(x)
vel_to_cel(x)

Arguments

u, x Speed: either a vector of speeds or a vector of three-velocities or four-velocities

d In functions celerity_ur() and rapidity_ur(), deficit of speed; speed of
light minus speed of object

celerity 9

Details

The celerity corresponding to speed u is defined as uγ and the rapidity is c · atanh(u/c).

Functions celerity_ur() and rapidity_ur() are used for the ultrarelativistic case where speeds
are very close to the speed of light. Its argument d is the deficit, that is, d = c − v where v is the
speed of the transformation. Algebraically, celerity_ur(c-v) == celerity(v), but if d = 1−v/c
is small the result of celerity_ur() is more accurate than that of celerity().

Things get a bit sticky for celerity and rapidity if c ̸= 1. The guiding principle in the package is to
give the celerity and rapidity the same units as c, so if u ≪ c we have that all three of celerity(u),
rapidity(u) and u are approximately equal. Note carefully that, in contrast, γ is dimensionless.
Also observe that d in functions celerity_ur() and rapidity_ur() has the same units as c.

Author(s)

Robin K. S. Hankin

See Also

gam

Examples

u <- 0.1 # c=1
c(u,celerity(u),rapidity(u))

omgp <- 4.9e-24 # speed deficit of the Oh-My-God particle
c(celerity_ur(omgp),rapidity_ur(omgp))

sol(299792458) # use SI units
u <- 3e7 # ~0.1c
c(u,celerity(u),rapidity(u))

snail <- 0.00275
c(snail,celerity(snail),rapidity(snail))

omgp <- omgp*sol()
c(celerity_ur(omgp),rapidity_ur(omgp))

sol(1)

10 comm_fail

comm_fail Failure of commutativity and associativity using visual plots

Description

Relativistic addition of three-velocities is neither commutative nor associative, and the functions
documented here show this visually.

Usage

comm_fail1(u, v, bold=5, r=1)
comm_fail2(u, v, bold=5, r=1)
ass_fail(u, v, w, bold=5,r=1)
my_seg(u,start=as.3vel(0), bold=5, ...)

Arguments

u, v, w, start Three velocities. Arguments u and w are single-element three velocities, argu-
ment v is a vector. See the examples

bold Integer specifying which vector element to be drawn in bold

r Radius of dotted green circle, defaulting to 1 (corresponding to c = 1). Use NA
to suppress plotting of circle

... Further arguments, passed to arrows()

Value

These functions are called for their side-effect of plotting a diagram.

Note

The vignette lorentz gives more details and interpretation of the diagrams.

Function my_seg() is an internal helper function.

Author(s)

Robin K. S. Hankin

Examples

u <- as.3vel(c(0.4,0,0))
v <- seq(as.3vel(c(0.4,-0.2,0)), as.3vel(c(-0.3,0.9,0)),len=20)
w <- as.3vel(c(0.8,-0.4,0))

comm_fail1(u=u, v=v)
comm_fail2(u=u, v=v)

ass_fail(u=u, v=v, w=w, bold=10)

coordnames 11

coordnames Coordinate names for relativity

Description

Trivial function to set coordinate names to “t”, “x”, “y”, “z”.

Usage

coordnames(...)
flob(x)

Arguments

... Further arguments, currently ignored

x A matrix

Details

Function coordnames() simply returns the character string c("t","x","y","z"). It may be over-
written. Function flob() sets the row and columnnames of a 4× 4 matrix to coordnames().

Note

If anyone can think of a better name than flob() let me know.

Author(s)

Robin K. S. Hankin

Examples

coordnames()

flob(diag(3))
flob(matrix(1,4,4))

You can change the names if you wish:
coordnames <- function(x){letters[1:4]}
flob(outer(1:4,1:4))

12 Extract.3vel

cosines Direction cosines

Description

Given a vector of three-velocities, returns their direction cosines

Usage

cosines(u, drop = TRUE)

Arguments

u A vector of three-velocities

drop Boolean, with default TRUE meaning to coerce return value from a one-row ma-
trix to a vector, and FALSE meaning to consistently return a matrix

Author(s)

Robin K. S. Hankin

Examples

cosines(r3vel(7))

cosines(r3vel(1),drop=TRUE)
cosines(r3vel(1),drop=FALSE)

Extract.3vel Extract or replace parts of three-velocity

Description

Extract or replace subsets of three-velocities

Arguments

x A three-vector

index elements to extract or replace

value replacement value

fourmom 13

Details

These methods (should) work as expected: an object of class 3vel is a three-column matrix with
rows corresponding to three-velocities; a single argument is interpreted as a row number. Salient
use-cases are u[1:5] <- u[1] and u[1] <- 0.

To extract a single component, pass a second index: u[,1] returns the x- component of the three-
velocity.

Extraction functions take a drop argument, except for x[i] which returns a vec object.

Currently, u[] returns u but I am not sure this is desirable. Maybe it should return unclass(u) or
perhaps c(unclass(u)).

Use idiom u[] <- x to replace entries of u elementwise.

Examples

u <- r3vel(10)
u[1:4]
u[5:6] <- 0

u[7:8] <- u[1]

u[,1] <- 0.1

fourmom Four momentum

Description

Create and test for four-momentum

Usage

S3 method for class '4mom'
Ops(e1, e2)
S3 method for class '4mom'
sum(..., na.rm=FALSE)
vel_to_4mom(U,m=1)
p_to_4mom(p,E=1)
as.4mom(x)
is.4mom(x)
fourmom_mult(P,n)
fourmom_add(e1,e2)

14 fourmom

Arguments

x, P, e1, e2 Four-momentum

p Three-momentum

E Scalar; energy

U Object coerced to four-velocity

m Scalar; rest mass

n Multiplying factor

..., na.rm Arguments sent to sum()

Details

Four-momentum is a relativistic generalization of three-momentum, with the object’s energy as the
first element. It can be defined as mU , where m is the rest mass and U the four-velocity. Equiva-
lently, one can define four-momentum as (E/c, px, py, pz) where E is the energy and (px, py, pz)
the three-momentum.

Function vel_to_4mom() converts three-velocity to four-momentum, and function p_to_4mom())
converts a three-momentum to a four-momentum.

The function Ops.4mom() passes unary and binary arithmetic operators “+”, “-” and “*” to the
appropriate specialist function.

The package is designed so that natural R idiom may be used for physically meaningful operations
such as combining momenta of different objects, using the conservation of four-momentum.

For the four-momentum of a photon, use as.photon().

Author(s)

Robin K. S. Hankin

See Also

boost,as.photon

Examples

Define 5 random three velocities:
v <- r3vel(5)

convert to four-velocity:
as.4vel(v)

Now convert 'v' to four-momentum, specifying rest mass:
vel_to_4mom(v) # 4mom of five objects with 3vel v, all unit mass
vel_to_4mom(v, 1:5) # 4mom of five objects with 3vel v, masses 1-5
vel_to_4mom(v[1],1:5) # 4mom of five objects with same 3vel, masses 1..5

Now convert 'v' to four-momentum, specifying energy E:
p_to_4mom(v,E=1)
p_to_4mom(v,E=10) # slower

fourvel 15

p_to_4mom(v,E=100) # even slower

Four-momentum of objects moving closely parallel to the x-axis:
P <- vel_to_4mom(as.3vel(c(0.8,0,0)) + r3vel(7,0.01))

reflect(P)
reflect(P,c(1,1,1))

sum(P)

fourvel Four velocities

Description

Create and test for four-velocities.

Usage

as.4vel(u)
is.consistent.4vel(U, give=FALSE, TOL=1e-10)
inner4(U,V=U)
to3(U)

Arguments

u A vector of three-velocities
U, V A vector of four-velocities
give In function is.consistent.4vel(), Boolean with TRUE meaning to return U ·

U + c2, which is zero for a four-velocity, and default FALSE meaning to return
whether the four-velocity is consistent to numerical precision

TOL Small positive value used for tolerance

Details

Function as.4vel() takes a three-velocity and returns a four-velocity.

Given a four-vector V , function inner4() returns the Lorentz invariant V iVi = ηijV
iV j . This

quantity is unchanged under Lorentz transforms. Note that function inner4() works for any four-
vector, not just four-velocities. It will work for (eg) a four-displacement, a four-momentum vector
or a four-frequency. In electromagnetism, we could have a four-current or a four-potential. If U is
a four-velocity, then U iUi = −c2; if U is a 4-displacement, then U iUi is the squared interval. If P
is the four-momentum of a photon then P iPi = 0.

Function to3() is a low-level helper function used when as.3vel() is given a four-velocity.

Function is.consistent.4vel() checks for four-velocities being consistent in the sense that U iUi =
−c2. Giving this function a vector, for example, is.consistent.4vel(1:5), will return an error.

Compare the functions documented here with boost(), which returns a 4×4 transformation matrix
(which also includes rotation information).

16 galileo

Author(s)

Robin K. S. Hankin

See Also

boost

Examples

a <- r3vel(10)
as.4vel(a) # a four-velocity

as.3vel(as.4vel(a))-a # zero to numerical precision

inner4(as.4vel(a)) # -1 to numerical precision

stopifnot(all(is.consistent.4vel(as.4vel(a))))

check Lorentz invariance of dot product:
U <- as.4vel(r3vel(10))
V <- as.4vel(r3vel(10))
B <- boost(as.3vel(1:3/10))

frame1dotprod <- inner4(U, V)
frame2dotprod <- inner4(U %*% B, V %*% B)
max(abs(frame1dotprod-frame2dotprod)) # zero to numerical precision

galileo Classical mechanics; Newtonian approximation; infinite speed of light

Description

The Lorentz transforms reduce to their classical limit, the Galilean transforms, if speeds are low
compared with c. Package idiom for working in a classical framework is to use an infinite speed of
light: sol(Inf). Here I show examples of this.

Author(s)

Robin K. S. Hankin

See Also

boost

gam 17

Examples

sol(Inf)
boost(as.3vel(1:3))
as.3vel(1:3) + as.3vel(c(-1,4,5)) # classical velocity addition
rot(as.3vel(1:3),as.3vel(c(-4,5,2))) # identity matrix

B <- boost(as.3vel(1:3))
orthog(B) %*% pureboost(B) # should be B

sol(1)

gam Gamma correction

Description

Lorentz gamma correction term in special relativity

Usage

S3 method for class '3vel'
speed(u)
S3 method for class '4vel'
speed(u)
speedsquared(u)
gam(u)
gamm1(u)
S3 method for class '3vel'
gam(u)
S3 method for class '3cel'
gam(u)
S3 method for class '4vel'
gam(u)
S3 method for class '3vel'
gamm1(u)
S3 method for class '4vel'
gamm1(u)
gam_ur(d)

Arguments

u Speed: either a vector of speeds or a vector of three-velocities or four-velocities

d In function gam_ur(), deficit of speed; speed of light minus speed of object

18 gam

Details

Function speed(u) returns the speed of a 3vel object or 4vel object.

Function gam(u) returns the Lorentz factor

1√
1− u · u/c2

Function gamm1(u) returns the Lorentz factor minus 1, useful for slow speeds when larger accuracy
is needed (much like expm1()); to see the R idiom, type “gamm1.3vel” at the commandline. Func-
tion gamm1() is intended to work with 3vel objects or speeds. The function will take a 4-velocity,
but this is not recommended as accuracy is lost (all it does is return the time component of the
4-velocity minus 1).

Function gam_ur() is used for the ultrarelativistic case where speeds are very close to the speed
of light (the function is named for “gamma, ultrarelativistic”). Its argument d is the deficit, that is,
c − v where v is the speed of the transformation. Algebraically, gam_ur(c-v) == gam(v), but if d
is small compared to c the result is more accurate.

Function speedsquared(u) returns the square of the speed of a 3vel object. Use this to avoid
taking a needless square root.

Author(s)

Robin K. S. Hankin

Examples

gam(seq(from=0,by=0.1,len=10))
gam(r3vel(6,0.7))

x <- as.3vel(c(0.1,0.4,0.5))
speed(x)

gam(speed(x)) # works, but slow and inaccurate
gam(x) # recommended: avoids needless coercion

Use SI units and deal with terrestrial speeds. Use gamm1() for this.
sol(299792458)
sound <- 343 # speed of sound in SI
gam(sound)
gam(sound)-1
gamm1(sound) # gamm1() gives much higher precision

snail <- as.3vel(c(0.00275,0,0)) # even the world's fastest snail...
gamm1(snail) # ...has only a small relativistic correction

For the ultrarelativistic case of speeds very close to the speed of
light, use gam_ur():

gyr 19

sol(1) # revert to relativistic units

gam(0.99) - gam_ur(0.01) # zero to numerical accuracy

omgp <- 4.9e-24 # speed deficit of the Oh-My-God particle
gam(1-omgp) # numeric overflow
gam_ur(omgp) # large but finite

gyr Gyr function

Description

Relativistic addition of three velocities

Usage

gyr(u, v, x)
gyr.a(u, v, x)
gyrfun(u, v)

Arguments

u, v, x Three-velocities, objects of class 3vel

Details

Function gyr(u,v,x) returns the three-vector gyr[u, v]x.

Function gyrfun(u,v) returns a function that returns a three-vector; see examples.

The speed of light (1 by default) is not used directly by these functions; set it with sol().

Note

Function gyr() is slightly faster than gyr.a(), which is included for pedagogical reasons.

Function gyr() is simply

add3(neg3(add3(u,v)),add3(u,add3(v,x)))

while function gyr.a() uses the slower but more transparent idiom

-(u+v) + (u+(v+x))

Author(s)

Robin K. S. Hankin

20 Ops.3vel

References

• Ungar 2006. “Thomas precession: a kinematic effect of the algebra of Einstein’s velocity ad-
dition law. Comments on ‘Deriving relativistic momentum and energy: I. Three-dimensional
case”’. European Journal of Physics, 27:L17-L20.

• Sbitneva 2001. “Nonassociative geometry of special relativity”. International Journal of The-
oretical Physics, volume 40, number 1, pages 359–362

Examples

u <- r3vel(10)
v <- r3vel(10)
w <- r3vel(10)

x <- as.3vel(c(0.4,0.1,-0.5))
y <- as.3vel(c(0.1,0.2,-0.7))
z <- as.3vel(c(0.2,0.3,-0.1))

gyr(u,v,x) # gyr[u,v]x

f <- gyrfun(u,v)
g <- gyrfun(v,u)

f(x)
f(r3vel(10))

f(g(x)) - x # zero, by eqn 9
g(f(x)) - x # zero, by eqn 9
(x+y) - f(y+x) # zero by eqn 10
(u+(v+w)) - ((u+v)+f(w)) # zero by eqn 11

Following taken from Sbitneva 2001:

rbind(x+(y+(x+z)) , (x+(y+x))+z) # left Bol property
rbind((x+y)+(x+y) , x+(y+(y+x))) # left Bruck property

sol(299792458) # speed of light in SI
as.3vel(c(1000,3000,1000)) + as.3vel(c(1000,3000,1000))
should be close to Galilean result

sol(1) # revert to default c=1

Ops.3vel Arithmetic Ops Group Methods for 3vel objects

Ops.3vel 21

Description

Arithmetic operations for three-velocities

Usage

S3 method for class '3vel'
Ops(e1, e2)
S3 method for class '4vel'
Ops(e1, e2)
massage3(u,v)
neg3(u)
prod3(u,v=u)
add3(u,v)
dot3(v,r)

Arguments

e1, e2, u, v Objects of class “3vel”, three-velocities

r Scalar value for circle-dot multiplication

Details

The function Ops.3vel() passes unary and binary arithmetic operators “+”, “-” and “*” to the
appropriate specialist function.

The most interesting operators are “+” and “*”, which are passed to add3() and dot3() respec-
tively. These are defined, following Ungar, as:

u+ v =
1

1 + u · b/c2

{
u+

1

γu
v +

1

c2
γu

1 + γu
(u · v)u

}
and

r ⊙ v = c tanh

(
r tanh−1 ||v||

c

)
v

||v||

where u and v are three-vectors and r a scalar. Function dot3() has special dispensation for zero
velocity and does not treat NA entries entirely consistently.

Arithmetic operations, executed via Ops.4vel(), are not defined on four-velocities.

The package is designed so that natural R idiom may be used for three velocity addition, see the
examples section.

Value

Returns an object of class 3vel, except for prod3() which returns a numeric vector.

22 photon

Examples

u <- as.3vel(c(-0.7, 0.1,-0.1))
v <- as.3vel(c(0.1, 0.2, 0.3))
w <- as.3vel(c(0.5, 0.2,-0.3))

x <- r3vel(10) # random three velocities
y <- r3vel(10) # random three velocities

u+v # add3(u,v)
u-v # add3(u,neg3(v))

-v # neg3(v)

gyr(u,v,w)

package is vectorized:

u+x
x+y

f <- gyrfun(u,v)
g <- gyrfun(v,u)

f(g(x)) - x # should be zero by eqn10
g(f(x)) - x

(u+v) - f(v+u) # zero by eqn 10
(u+(v+w)) - ((u+v)+f(w)) # zero by eqn 11
((u+v)+w) - (u+(v+g(w))) # zero by eqn 11

NB, R idiom is unambiguous. But always always ALWAYS use brackets.

Ice report in lat 42.n to 41.25n Long 49w to long 50.30w saw much
heavy pack ice and great number large icebergs also field
ice. Weather good clear

-u+v == (-u) + v == neg3(u) + v == add3(neg3(u),v)

u+v+w == (u+v)+w == add3(add3(u,v),w)

photon Photons

Description

Various functionality to deal with the 4-momentum of a photon

photon 23

Usage

is.consistent.nullvec(N,TOL=1e-10)
as.photon(x,E=1)

Arguments

N Four-momentum to be tested for nullness

TOL tolerance

x Vector of three-velocities

E Energy, a scalar

Details

Returns the four-momentum of a photon.

Author(s)

Robin K. S. Hankin

See Also

4mom,reflect

Examples

A bunch of photons all approximately parallel to the x-axis:
as.photon(as.3vel(cbind(0.9,runif(10)/1000,runif(10)/1000)))

mirror ball:
jj <- matrix(rnorm(30),10,3)
disco <- sweep(matrix(rnorm(30),10,3),1,sqrt(rowSums(jj^2)),`/`)
p <- as.photon(c(1,0,0))
reflect(p,disco)

table(reflect(p,disco)[,2]>0) # should be TRUE with probability sqrt(0.5)

relativistic disco; mirror ball moves at 0.5c:

B <- boost(as.3vel(c(0.5,0,0)))
p |> tcrossprod(B) |> reflect(disco) |> tcrossprod(solve(B))

24 r3vel

print.3vel Print methods for three-velocities and four-velocities

Description

Print methods for three-velocities

Usage

S3 method for class '3vel'
print(x, ...)
S3 method for class '3cel'
print(x, ...)
S3 method for class '4vel'
print(x, ...)
S3 method for class '4mom'
print(x, ...)

Arguments

x Vector of three-velocities

... Further arguments, currently ignored

Value

Returns a vector of three-velocities

Author(s)

Robin K. S. Hankin

Examples

r3vel(10)

r3vel Random relativistic velocities

Description

Generates random three-velocities or four-velocities, optionally specifiying a magnitude

Usage

r3vel(n=7, r = NA)
r4vel(...)
rboost(r = NA)

r3vel 25

Arguments

n Number of three- or four- velocities to generate

r Absolute value of the three-velocities, with default NA meaning to sample uni-
formly from the unit ball

... Arguments passed to r3vel()

Details

Function r3vel() returns a random three-velocity. Function r4vel() is a convenience wrapper for
as.4vel(r3vel()).

Function rboost() returns a random 4 × 4 Lorentz boost matrix, drawn from the connected com-
ponent. If given r=0, then a transform corresponding to a random rotation will be returned.

Value

Returns a vector of three- or four- velocities.

Note

If the speed of light is infinite, these functions require a specified argument for r.

It is not entirely trivial to sample uniformly from the unit ball or unit sphere, but it is not hard either.

Author(s)

Robin K. S. Hankin

Examples

r3vel()

a <- r3vel(10000)
b <- r3vel(1000,0.8)
u <- as.3vel(c(0,0,0.9))

pairs(unclass(u+a),asp=1)
pairs(unclass(a+u),asp=1)

is.consistent.boost(rboost())

sol(299792458) # switch to SI units
sound <- 343 # speed of sound in metres per second
r3vel(100,343) # random 3-velocities with speed = 343 m/s

sol(1) # return to default c=1

26 reflect

reflect Mirrors

Description

Plane mirrors in special relativity

Usage

reflect(P,m,ref=1)

Arguments

P Vector of four-momenta

m Orientation of mirror, expressed as a three-vector

ref Coefficient of reflectivity of the mirror

Value

Takes a four-momentum and returns the four-momentum after reflection. Will handle objects or
photons.

Note

All four-momenta are measured in the rest frame of the mirror, but it is easy to reflect from moving
mirrors; see examples.

However, note that the ref argument is designed to work with photons only, where it is conceptually
the percentage of photons reflected and not absorbed by the mirror. If ref is less than unity, odd
results are given for four momenta of nonzero restmass objects.

Author(s)

Robin K. S. Hankin

See Also

photon

Examples

We will reflect some photons from an oblique mirror moving at half
the speed of light.

First create 'A', a bunch of photons all moving roughly along the x-axis:
A <- as.photon(as.3vel(cbind(0.9,runif(10)/1000,runif(10)/1000)))

Now create 'm', a mirror oriented perpendicular to c(1,1,1):
m <- c(1,1,1)

seq.3vel 27

Reflect the photons in the mirror:
reflect(A,m)

Reflect the photons in a series of mirrors:
A |> reflect(m) |> reflect(1:3) |> reflect(3:1)

To reflect from a moving mirror we need to transform to a frame in
which the mirror is at rest, then transform back to the original
frame. First create B, a boost representing the mirror's movement
along the x-axis at speed c/2:

B <- boost(as.3vel(c(0.5,0,0)))

Transform to the mirror's rest frame:
A %*% t(B)

NB: in the above, take a transpose because the *rows* of A are 4-vectors.

Then reflect the photons in the mirror:
reflect(A %*% t(B),m)

Now transform back to the original rest frame (NB: active transform):
A |> tcrossprod(B) |> reflect(m) |> tcrossprod(solve(B))

seq.3vel seq method for three velocities

Description

Simplified version of seq() for three-velocities.

Usage

S3 method for class '3vel'
seq(from, to, len, ...)

Arguments

from, to Start and end of sequence

len Length of vector returned

... Further arguments (currently ignored)

28 sol

Details

seq(a,b,n) returns a + t*(-b+a) where t is numeric vector seq(from=0,to=1,len=n).

This definition is one of several plausible alternatives, but has the nice property that the first and
last elements are exactly equal to a and b respectively.

Author(s)

Robin K. S. Hankin

Examples

a <- as.3vel(c(4,5,6)/9)
b <- as.3vel(c(-5,6,8)/14)
x <- seq(a,b,len=9)

x[1]-a # should be zero
x[9]-b # should be zero

jj <- a + seq(0,1,len=9)*(b-a)

jj-x # decidedly non-zero

sol Speed of light and Minkowski metric

Description

Getting and setting the speed of light

Usage

sol(c)
eta(downstairs=TRUE)
ptm(to_natural=TRUE, change_time=TRUE)

Arguments

c Scalar, speed of light. If missing, return the speed of light

downstairs Boolean, with default TRUE meaning to return the covariant metric tensor gij
with two downstairs indices, and FALSE meaning to return the contravariant ver-
sion gij with two upstairs indices

to_natural, change_time
Boolean, specifying the nature of the passive transform matrix

sol 29

Details

In the context of an R package, the symbol “c” presents particular problems. In the lorentz package,
the speed of light is denoted “sol”, for ‘speed of light’. You can set the speed of light with sol(x),
and query it with sol(); see the examples. An infinite speed of light is sometimes useful for
Galilean transforms.

The speed of light is a global variable, governed by options("c"). If NULL, define c=1. Setting
showSOL to TRUE makes sol() change the prompt to display the speed of light which might be
useful.

Function eta() returns the Minkowski flat-space metric

diag
(
−c2, 1, 1, 1

)
.

Note that the top-left element of eta() is −c2, not −1.

Function ptm() returns a passive transformation matrix that converts displacement vectors to natu-
ral units (to_natural=TRUE) or from natural units (to_natural=FALSE). Argument change_time
specifies whether to change the unit of time (if TRUE) or the unit of length (if FALSE).

Note

Typing “sol(299792458)” is a lot easier than typing “options("c"=299792458)”, which is why
the package uses the idiom that it does.

In a R-devel discussion about options for printing, Martin Maechler makes the following observa-
tion: “Good programming style for functions according to my book is to have them depend only on
their arguments, and if a global option really (really? think twice!) should influence behavior, there
should be arguments of the function which have a default determined by the global option”

I think he is right in general, but offer the observation that the speed of light depends on the units
chosen, and typically one fixes one’s units once and for all, and does not subsequently change them.
This would indicate (to me at least) that a global option would be appropriate. Further, there is a
default, c = 1, which is returned by sol() if the option is unset. This is not just a “default”, though:
it is used in the overwhelming majority of cases. Indeed, pedagogically speaking, one learning
objective from the package is that units in which c ̸= 1 are difficult, awkward, and unnatural. In the
package R code, the only place the speed of light option is accessed is via sol(). Similar arguments
are presented in the clifford package at signature.Rd.

Author(s)

Robin K. S. Hankin

Examples

sol() # returns current speed of light
sol(299792458) # use SI units
sol() # speed of light now SI value

eta() # note [t,t] term
u <- as.3vel(c(100,200,300)) # fast terrestrial speed, but not relativistic
boost(u) # boost matrix practically Galilean
is.consistent.boost(boost(u)) # should be TRUE

30 threevel

sol(1) # revert to relativistic units

threevel Three velocities

Description

Create and test for three-velocities, 3vel objects.

Usage

`3vel`(n)
threevel(n)
as.3vel(x)
is.3vel(x)
S3 method for class 'vec'
length(x)
S3 method for class 'vec'
names(x)
S3 replacement method for class 'vec'
names(x) <- value

Arguments

n In function 3vel(), number of three velocities to create

x, value Vectors of three-velocities

Note

Class vel is a virtual class containing classes 3vel and 4vel.

Function threevel() is a convenience wrapper for 3vel().

Author(s)

Robin K. S. Hankin

Examples

U <- r4vel(7)
as.4vel(as.3vel(U)) # equal to U, to numerical precision

x <- as.3vel(1:3/4)
u <- as.3vel(matrix(runif(30)/10,ncol=3))

names(u) <- letters[1:10]

x+u

transform 31

u+x # not equal

transform The energy-momentum tensor

Description

Various functionality to deal with the stress-energy tensor in special relativity.

Usage

perfectfluid(rho,p,u=0)
dust(rho,u=0)
photongas(rho,u=0)
transform_dd(TT, B)
transform_ud(TT, B)
transform_uu(TT, B)
raise(TT)
lower(TT)

Arguments

TT A second-rank tensor with indices either downstairs-downstairs, downstairs-
upstairs, or upstairs-upstairs

B A boost matrix

rho, p, u Density, pressure, and four-velocity of the dust

Details

Function perfectfluid() returns the stress-energy tensor, with two upstairs indices, for a perfect
fluid with the conditions specified. No checking for physical reasonableness (eg the weak energy
condition) is performed: caveat emptor!

Function dust() is a (trivial) function that returns the stress-energy tensor of a zero-pressure perfect
fluid (that is, dust). Function photongas() returns the stress-energy tensor of a photon gas. They
are here for discoverability reasons; both are special cases of a perfect fluid.

Functions transform_dd() et seq transform a second-rank tensor using the Lorentz transform.
The letters “u” or “d” denote the indices of the tensor being upstairs (contravariant) or down-
stairs (covariant). The stress-energy tensor is usually written with two upstairs indices, so use
transform_uu() to transform it.

Function lower() lowers both indices of a tensor with two upstairs indices. Function raise()
raises two downstairs indices. These two functions have identical R idiom but do not return identical
values if c ̸= 1.

32 transform

Author(s)

Robin K. S. Hankin

Examples

perfectfluid(10,1)

u <- as.3vel(c(0.4,0.4,0.2))

In the following, LHS is stationary dust and RHS is dust moving at
velocity 'u', but transformed to a frame also moving at velocity 'u':

LHS <- dust(1)
RHS <- transform_uu(dust(1,u),boost(u))
max(abs(LHS-RHS)) # should be small

In the following, negative sign needed because active/passive
difference:

LHS <- dust(1,u)
RHS <- transform_uu(dust(1),boost(-u))
max(abs(LHS-RHS)) # should be small

Now test behaviour when c!=1:

sol(299792458)
perfectfluid(1.225,101325) # air at STP

LHS <- transform_uu(perfectfluid(1.225,101325),boost(as.3vel(c(1000,0,0))))
RHS <- perfectfluid(1.225,101325)
LHS-RHS # should be small

sol(10)
u <- as.3vel(4:6)
LHS <- photongas(1,u)
RHS <- transform_uu(photongas(1),boost(-u))
LHS-RHS # should be small

B1 <- boost(r3vel(1)) %*% boost(r3vel(1))
B2 <- boost(r3vel(1)) %*% boost(r3vel(1))
LHS <- transform_uu(transform_uu(dust(1),B1),B2)
RHS <- transform_uu(dust(1),B2 %*% B1) # note order
LHS-RHS # should be small

remember to re-set c:
sol(1)

Index

∗ array
c.3vel, 7

∗ package
lorentz-package, 2

[.3vel (Extract.3vel), 12
[.4vel (Extract.3vel), 12
[.vel (Extract.3vel), 12
[<-.3vel (Extract.3vel), 12
[<-.4vel (Extract.3vel), 12
[<-.vel (Extract.3vel), 12
3-velocity (threevel), 30
3vel (threevel), 30
3velocity (threevel), 30
4-momentum (fourmom), 13
4-velocity (fourvel), 15
4mom, 23
4mom (fourmom), 13
4momentum (fourmom), 13
4vel (fourvel), 15
4velocity (fourvel), 15

add3 (Ops.3vel), 20
as.3cel (celerity), 8
as.3vel (threevel), 30
as.4mom (fourmom), 13
as.4vel (fourvel), 15
as.matrix.3vel, 3
as.matrix.4vel (as.matrix.3vel), 3
as.photon, 14
as.photon (photon), 22
ass_fail (comm_fail), 10

boost, 4, 14, 16
boostfun (boost), 4

c.3cel (c.3vel), 7
c.3vel, 7
c.4vel (c.3vel), 7
cel_to_vel (celerity), 8
celerity, 8

celerity_ur (celerity), 8
classical (galileo), 16
comm_fail, 10
comm_fail1 (comm_fail), 10
comm_fail2 (comm_fail), 10
coordnames, 11
cosine (cosines), 12
cosines, 12

dcosines (cosines), 12
decompose (boost), 4
direction.cosines (cosines), 12
dot3 (Ops.3vel), 20
dust (transform), 31

energy-momentum (transform), 31
energy-momentum-tensor (transform), 31
equal3 (Ops.3vel), 20
eta (sol), 28
Extract.3vel, 12
extract.3vel (Extract.3vel), 12

flob (coordnames), 11
four-momentum (fourmom), 13
four-velocity (fourvel), 15
fourmom, 13
fourmom_add (fourmom), 13
fourmom_mult (fourmom), 13
fourmomentum (fourmom), 13
fourvel, 15
fourvelocity (fourvel), 15

Galilean (galileo), 16
galilean (galileo), 16
Galileo (galileo), 16
galileo, 16
gam, 9, 17
gam_ur (gam), 17
gamm1 (gam), 17
gyr, 19

33

34 INDEX

gyrfun (gyr), 19
gyrogroup (lorentz-package), 2

inner product (fourvel), 15
inner4 (fourvel), 15
is.3cel (celerity), 8
is.3vel (threevel), 30
is.4mom (fourmom), 13
is.4vel (fourvel), 15
is.consistent.4vel (fourvel), 15
is.consistent.boost (boost), 4
is.consistent.galilean.boost (boost), 4
is.consistent.nullvec (photon), 22

length.vec (threevel), 30
light (photon), 22
lightspeed (sol), 28
Lorentz (lorentz-package), 2
lorentz (lorentz-package), 2
lorentz-package, 2
lower (transform), 31

massage3 (Ops.3vel), 20
minkowski (sol), 28
mirror (reflect), 26
mirrors (reflect), 26
my_seg (comm_fail), 10

names.vec (threevel), 30
names<-.vec (threevel), 30
neg3 (Ops.3vel), 20
Newton (galileo), 16
newton (galileo), 16
Newtonian (galileo), 16
newtonian (galileo), 16
null vector (photon), 22
nullvec (photon), 22
nullvector (photon), 22

Ops (Ops.3vel), 20
Ops.3vel, 20
Ops.4mom (fourmom), 13
orthog (boost), 4

p_to_4mom (fourmom), 13
perfectfluid (transform), 31
photon, 22, 26
photongas (transform), 31
precession (boost), 4
print.3cel (print.3vel), 24

print.3vel, 24
print.4mom (print.3vel), 24
print.4vel (print.3vel), 24
prod3 (Ops.3vel), 20
ptm (sol), 28
pureboost (boost), 4

r3vel, 24
r4vel (r3vel), 24
raise (transform), 31
rapidity (celerity), 8
rapidity_ur (celerity), 8
rboost (r3vel), 24
reflect, 23, 26
reflection (reflect), 26
rot (boost), 4

seq.3vel, 27
SET (transform), 31
sol, 8, 28
speed (gam), 17
speedsquared (gam), 17
stress (transform), 31
stress-energy (transform), 31
stress-energy-tensor (transform), 31
sum.4mom (fourmom), 13

Thomas (boost), 4
thomas (boost), 4
Thomas rotation (boost), 4
three-velocity (threevel), 30
threecel (celerity), 8
threevel, 30
threevelocity (threevel), 30
to3 (fourvel), 15
transform, 31
transform_dd (transform), 31
transform_ud (transform), 31
transform_uu (transform), 31

vel_to_4mom (fourmom), 13
vel_to_cel (celerity), 8

Wigner (boost), 4
wigner (boost), 4
Wigner rotation (boost), 4

	lorentz-package
	as.matrix.3vel
	boost
	c.3vel
	celerity
	comm_fail
	coordnames
	cosines
	Extract.3vel
	fourmom
	fourvel
	galileo
	gam
	gyr
	Ops.3vel
	photon
	print.3vel
	r3vel
	reflect
	seq.3vel
	sol
	threevel
	transform
	Index

