
Special relativity in R: introducing the lorentz
package

Robin K. S. Hankin
University of Stirling

Abstract

Here I present the lorentz package for working with relativistic physics. The pack-
age includes functionality for Lorentz transforms and Einsteinian three-velocity addi-
tion, which is noncommutative and nonassociative. It is available on CRAN at https:
//CRAN.R-project.org/package=lorentz. To cite the lorentz package, use Hankin
(2022).

Keywords: Lorentz transform, Lorentz group, Lorentz law, Lorentz velocity addition, special
relativity, relativistic physics, Einstein velocity addition, Wigner rotation, gyrogroup, gy-
romorphism, gyrocommutative, gyroassociative, four velocity, three-velocity, nonassociative,
noncommutative.

1. Introduction

In special relativity, the Lorentz transforms supercede their classical equivalent, the Galilean
transforms (Goldstein 1980). Lorentz transforms operate on four-vectors such as the four-
velocity or four-potential and are usually operationalised as multiplication by a 4 × 4 matrix.
A Lorentz transform takes the components of an arbitrary four-vector as observed in one
coordinate system and returns the components observed in another system which is moving
at constant velocity with respect to the first.
There are a few existing software tools for working with Lorentz transforms, mostly developed
in an educational context. Early work would include that of Horwitz, Taylor, and Barowy
(1994) who describe relLab, a system for building a range of gendanken experiments in an
interactive graphical environment. The author asserts that it runs on “any Macintosh com-
puter with one megabyte of RAM or more” but it is not clear whether the software is still
available. More modern contributions would include the OpenRelativity toolkit (Sherin, Cheu,
Tan, and Kortemeyer 2016) which simulates the effects of special relativity in the Unity game
engine.

https://CRAN.R-project.org/package=lorentz
https://CRAN.R-project.org/package=lorentz

2 The lorentz package

The lorentz package provides R-centric functionality for Lorentz transforms. It deals with
formal Lorentz boosts, converts between three-velocities and four-velocities, and provides
computational support for the gyrogroup structure of relativistic three-velocity addition.

2. Lorentz transforms: active and passive
Passive transforms are the usual type of transforms taught and used in relativity. However,
sometimes active transforms are needed and it is easy to confuse the two. Here I will discuss
passive and then active transforms, and illustrate both in a computational context.

Passive transforms

Consider the following canonical Lorentz transform in which we have motion in the x-direction
at speed v > 0; the motion is from left to right. We consider only the first two components
of four-vectors, the y- and z- components being trivial. A typical physical interpretation is
that I am at rest, and my friend is in his spaceship moving at speed v past me; and we are
wondering what vectors which I measure in my own rest frame look like to him. The (passive)
Lorentz transform is: (

γ −γv
−γv γ

)

And the canonical example of that would be:(
γ −γv

−γv γ

)(
1
0

)
=
(

γ
−γv

)

where the vectors are four velocities (recall that
(

1
0

)
is the four-velocity of an object at rest).

Operationally, I measure the four-velocity of an object to be
(

1
0

)
, and he measures the same

object as having a four-velocity of
(

γ
−γv

)
. So I see the object at rest, and he sees it as

moving at speed −v; that is, he sees it moving to the left (it moves to the left because he is
moving to the right relative to me). The package makes computations easy. Suppose v = 0.6c
in the x-direction.

> # NB: speed of light = 1 by default
> u <- as.3vel(c(0.6,0,0)) # coerce to a three-velocity
> u

A vector of three-velocities (speed of light = 1)
x y z

[1,] 0.6 0 0

> as.4vel(u) # four-velocity is better for calculations

Robin K. S. Hankin 3

A vector of four-velocities (speed of light = 1)
t x y z

[1,] 1.25 0.75 0 0

> (B <- boost(u)) # transformation matrix

t x y z
t 1.25 -0.75 0 0
x -0.75 1.25 0 0
y 0.00 0.00 1 0
z 0.00 0.00 0 1

(note that element [1, 2] of the boost matrix B is negative as we have a passive transform).
Then a four-velocity of (1, 0, 0, 0)T would appear in the moving frame as

> B %*% c(1,0,0,0)

[,1]
t 1.25
x -0.75
y 0.00
z 0.00

This corresponds to a speed of −0.75/1.25 = −0.6. Observe that it is possible to transform
an arbitrary four-vector:

> B %*% c(4,6,-8,9)

[,1]
t 0.5
x 4.5
y -8.0
z 9.0

Null vectors: light

Let’s try it with light (see section 9 for more details on photons). Recall that we describe
a photon in terms of its four momentum, not four-velocity, which is undefined for a photon.
Specifically, we define the four-momentum of a photon to be

E/c

Evx/c2

Evy/c2

Evz/c2

4 The lorentz package

So if we consider unit energy and keep c = 1 we get p =
(

1
1

)
in our one-dimensional world

(for a rightward-moving photon) and the Lorentz transform is then(
γ −γv

−γv γ

)(
1
1

)
=
(

γ − γv
γ − γv

)

So, in the language used above, I see a photon with unit energy, and my friend sees the photon
with energy γ(1 − v) =

√
1−v
1+v < 1, provided that v > 0: the photon has less energy in his

frame than mine because of Doppler redshifting. It’s worth doing the same analysis with a
leftward-moving photon: (

γ −γv
−γv γ

)(
1

−1

)
=
(

γ(1 + v)
−γ(1 + v)

)

Here the photon has more energy for him than me because of blue shifting: he is moving to
the right and encounters a photon moving to the left. The R idiom would be

> B %*% c(1,1,0,0)

[,1]
t 0.5
x 0.5
y 0.0
z 0.0

> B %*% c(1,-1,0,0)

[,1]
t 2
x -2
y 0
z 0

for the left- and right- moving photons respectively.
The above analysis uses passive transforms: there is a single physical reality, and we describe
that one physical reality using two different coordinate systems. One of the coordinate systems
uses a set of axes that are boosted relative to the axes of the other.
This is why it makes sense to use prime notation as in x −→ x′ and t −→ t′ for a passive
Lorentz transform: the prime denotes measurements made using coordinates that are defined
with respect to the boosted system, and we see notation like(

t′

x′

)
=
(

γ −γv
−γv γ

)(
t
x

)

These are the first two elements of a displacement four-vector. It is the same four-vector but
viewed in two different reference frames.

Robin K. S. Hankin 5

Active transforms

In the passive view, there is a single physical reality, and we are just describing that one phys-
ical reality using two different coordinate systems. Now we will consider active transforms:
there are two physical realities, but one is boosted with respect to another.
Suppose me and my friend have zero relative velocity, but my friend is in a spaceship and I
am outside it, in free space, at rest. He constructs a four-vector in his spaceship; for example,
he could fire bullets out of a gun which is fixed in the spaceship, and then calculate their
four-velocity as it appears to him in his spaceship-centric coordinate system. We both agree
on this four-velocity as our reference frames are identical: we have no relative velocity.
Now his spaceship acquires a constant velocity, leaving me stationary. My friend continues
to fire bullets out of his gun and sees that their four-velocity, as viewed in his spaceship
coordinates, is the same as when we were together.
Now he wonders what the four-velocity of the bullets is in my reference frame. This is an
active transform: we have two distinct physical realities, one in the spaceship when it was at
rest with respect to me, and one in the spaceship when moving. And both these realities, by
construction, look the same to my friend in the spaceship.
Suppose, for example, he sees the bullets at rest in his spaceship; they have a four-velocity of(

1
0

)
, and my friend says to himself: “I see bullets with a four velocity of

(
1
0

)
, and I know

what that means. The bullets are at rest. What are the bullets’ four velocities in Robin’s
reference frame?". This is an active transform:(

γ γv
γv γ

)(
1
0

)
=
(

γ
γv

)

(we again suppose that the spaceship moves at speed v > 0 from left to right). So he sees a

four velocity of
(

1
0

)
and I see

(
γ
γv

)
, that is, with a positive speed: the bullets move from

left to right (with the spaceship). The R idiom would be:

> (B <- boost(as.3vel(c(0.8,0,0)))) # 0.8c left to right

t x y z
t 1.666667 -1.333333 0 0
x -1.333333 1.666667 0 0
y 0.000000 0.000000 1 0
z 0.000000 0.000000 0 1

> solve(B) %*% c(1,0,0,0) # active transform

[,1]
t 1.666667
x 1.333333
y 0.000000
z 0.000000

6 The lorentz package

3. Successive Lorentz transforms
Coordinate transformation is effected by standard matrix multiplication; thus composition of
two Lorentz transforms is also ordinary matrix multiplication:

> u <- as.3vel(c(0.3,-0.4,+0.8))
> v <- as.3vel(c(0.4,+0.2,-0.1))
> L <- boost(u) %*% boost(v)
> L

t x y z
t 3.256577 -2.2327055 0.5419596 -2.0800479
x -1.437147 1.6996791 -0.0237489 0.4194255
y 1.091131 -0.7581795 1.1190282 -0.6029155
z -2.519789 1.5878378 -0.2023170 2.1879612

But observe that the resulting transform is not a pure boost, as the spatial components are not
symmetrical. We may decompose the matrix product L into a pure translation composed with
an orthogonal matrix, which represents a coordinate rotation. The R idiom is pureboost()
for the pure boost component, and orthog() for the rotation:

> (P <- pureboost(L)) # pure boost

t x y z
t 3.2565770 -2.2327055 0.5419596 -2.0800479
x -2.2327055 2.1711227 -0.2842745 1.0910491
y 0.5419596 -0.2842745 1.0690039 -0.2648377
z -2.0800479 1.0910491 -0.2648377 2.0164504

> P - t(P) # check for symmetry

t x y z
t 0 0.000000e+00 0.000000e+00 0.000000e+00
x 0 0.000000e+00 5.551115e-17 -2.220446e-16
y 0 -5.551115e-17 0.000000e+00 0.000000e+00
z 0 2.220446e-16 0.000000e+00 0.000000e+00

Now we compute the rotation:

> (U <- orthog(L)) # rotation matrix

t x y z
t 1.000000e+00 1.068372e-14 -2.609908e-15 9.216360e-15
x 4.553359e-15 9.458514e-01 1.592328e-01 -2.828604e-01
y -4.356093e-15 -1.858476e-01 9.801022e-01 -6.971587e-02
z 9.884121e-15 2.661311e-01 1.185098e-01 9.566241e-01

Robin K. S. Hankin 7

> U[2:4,2:4] # inspect the spatial components

x y z
x 0.9458514 0.1592328 -0.28286043
y -0.1858476 0.9801022 -0.06971587
z 0.2661311 0.1185098 0.95662410

> round(crossprod(U) - diag(4),10) # check for orthogonality

t x y z
t 0 0 0 0
x 0 0 0 0
y 0 0 0 0
z 0 0 0 0

> ## zero to within numerical uncertainty

4. Units in which c ̸= 1
The preceding material used units in which c = 1. Here I show how the package deals with
units such as SI in which c = 299792458 ̸= 1. For obvious reasons we cannot have a function
called c() so the package gets and sets the speed of light with function sol():

> sol(299792458)

[1] 299792458

> sol()

[1] 299792458

The speed of light is now 299792458 until re-set by sol() (an empty argument queries the
speed of light). We now consider speeds which are fast by terrestrial standards but involve
only a small relativistic correction to the Galilean result:

> u <- as.3vel(c(100,200,300))
> as.4vel(u)

A vector of four-velocities (speed of light = 299792458)
t x y z

[1,] 1 100 200 300

The gamma correction term γ is only very slightly larger than 1 and indeed R’s default print
method suppresses the difference:

8 The lorentz package

> gam(u)

[1] 1

However, we can display more significant figures by subtracting one:

> gam(u)-1

[1] 7.789325e-13

or alternatively we can use the gamm1() function which calculates γ − 1 more accurately for
speeds ≪ c:

> gamm1(u)

[1] 7.78855e-13

The Lorentz boost is again calculated by the boost() function:

> boost(u)

t x y z
t 1 -1.112650e-15 -2.22530e-15 -3.337950e-15
x -100 1.000000e+00 1.11265e-13 1.668975e-13
y -200 1.112650e-13 1.00000e+00 3.337950e-13
z -300 1.668975e-13 3.33795e-13 1.000000e+00

The boost matrix is not symmetrical, even though it is a pure boost, because c ̸= 1.
Note how the transform is essentially the Galilean result, which is discussed below.

4.1. Changing units

Often we have a four-vector in SI units and wish to express this in natural units.

> sol(299792458)

[1] 299792458

> disp <- c(1,1,0,0)

If we interpret disp as a four-displacement, it corresponds to moving 1 metre along the x-
axis and waiting for one second. To convert this to natural units we multiply by the passive
transformation matrix given by ptm():

> ptm(to_natural=TRUE) %*% disp

Robin K. S. Hankin 9

[,1]
t 299792458
x 1
y 0
z 0

In the above, see how the same vector is expressed in natural units in which the speed of light
is equal to 1: the unit of time is about 3 × 10−9 seconds and the unit of distance remains the
metre. Alternatively, we might decide to keep the unit of time equal to one second, and use
a unit of distance equal to 299792458 metres which again ensures that c = 1:

> ptm(to_natural=TRUE,change_time=FALSE) %*% disp

[,1]
t 1.000000e+00
x 3.335641e-09
y 0.000000e+00
z 0.000000e+00

As a further check, we can take two boost matrices corresponding to the same coordinate
transformation but expressed using different units of length and verify that their orthogonal
component agrees:

> sol(1)

[1] 1

> B1 <- boost((2:4)/10) %*% boost(c(-5,1,3)/10)
> orthog(B1)[2:4,2:4]

x y z
x 0.9832336 0.09752166 0.15408208
y -0.1020390 0.99454439 0.02166761
z -0.1511284 -0.03702671 0.98782044

Now we create B2 which is the same physical object but using a length scale of one-tenth of
B2 (which requires that we multiply the speed of light by a factor of 10):

> sol(10)

[1] 10

> B2 <- boost(2:4) %*% boost(c(-5,1,3)) # exactly the same as B1 above
> orthog(B2)[2:4,2:4]

10 The lorentz package

x y z
x 0.9832336 0.09752166 0.15408208
y -0.1020390 0.99454439 0.02166761
z -0.1511284 -0.03702671 0.98782044

so the two matrices agree, as expected.

5. Infinite speed of light
In the previous section considered speeds that were small compared with the speed of light
and here we will consider the classical limit of infinite c:

> sol(Inf)

[1] Inf

Then the familiar parallelogram law operates:

> u <- as.3vel(1:3)
> v <- as.3vel(c(-6,8,3))
> u+v

A vector of three-velocities (speed of light = Inf)
x y z

[1,] -5 10 6

> v+u

A vector of three-velocities (speed of light = Inf)
x y z

[1,] -5 10 6

Above we see that composition of velocities is commutative, unlike the relativistic case. The
boost matrix is instructive:

> boost(u)

t x y z
t 1 0 0 0
x -1 1 0 0
y -2 0 1 0
z -3 0 0 1

> boost(u+v)

Robin K. S. Hankin 11

t x y z
t 1 0 0 0
x 5 1 0 0
y -10 0 1 0
z -6 0 0 1

> boost(u) %*% boost(v)

t x y z
t 1 0 0 0
x 5 1 0 0
y -10 0 1 0
z -6 0 0 1

Above, see how the boost matrix for the composed velocity of u+v does not have any rotational
component, unlike the relativistic case [recall that boost() gives a passive transform, which
is why the sign of the numbers in the first column is changed]. With an infinite speed of light,
even “large” speeds have zero relativistic correction:

> gamm1(1e100)

[1] 0

Function rboost() returns a random Lorentz transform matrix, which is in general a com-
bination of a pure Lorentz boost and an orthogonal rotation. With an infinite speed of light,
it requires a speed:

> set.seed(0)
> options(digits=3)
> (B <- rboost(1)) # random boost, speed 1

t x y z
[1,] 1.000 0.000 0.0000 0.000
[2,] -0.411 0.213 -0.9402 0.266
[3,] -0.279 -0.917 -0.0989 0.385
[4,] 0.868 -0.336 -0.3260 -0.884

We can decompose B into a pure boost and an orthogonal transformation:

> orthog(B)

[,1] [,2] [,3] [,4]
[1,] 1 0.000 0.0000 0.000
[2,] 0 0.213 -0.9402 0.266
[3,] 0 -0.917 -0.0989 0.385
[4,] 0 -0.336 -0.3260 -0.884

12 The lorentz package

> pureboost(B)

t x y z
[1,] 1.000 0 0 0
[2,] -0.123 1 0 0
[3,] 0.131 0 1 0
[4,] -0.984 0 0 1

Boost matrices can be applied to any four-vector. Here I show how pure spatial displacements
transform with an infinite light speed.

> (u <- as.3vel(c(10,0,0))) # velocity of 10, parallel to x axis

A vector of three-velocities (speed of light = Inf)
x y z

[1,] 10 0 0

> (B <- boost(u))

t x y z
t 1 0 0 0
x -10 1 0 0
y 0 0 1 0
z 0 0 0 1

> d <- c(0,1,0,0) # displacement of distance one, parallel to the x-axis
> B %*% d

[,1]
t 0
x 1
y 0
z 0

Above we see that a spatial displacement is the same for both observers. We can similarly
apply a boost to a temporal displacement:

> d <- c(1,0,0,0) # displacement of one unit of time, no spatial component
> B %*% d

[,1]
t 1
x -10
y 0
z 0

Robin K. S. Hankin 13

Above we see the result expected from classical mechanics.

6. Vectorization
Here I discuss vectorized operations (to avoid confusion between boost matrices and their
transposes we will use c = 10). The issue is difficult because a Lorentz boost is conceptually
a matrix product of a 4 × 4 matrix with vector with four elements:

> sol(10)

[1] 10

> u <- as.3vel(c(5,-6,4))
> (U <- as.4vel(u))

A vector of four-velocities (speed of light = 10)
t x y z

[1,] 2.09 10.4 -12.5 8.34

> B <- boost(U)
> B %*% as.vector(U)

[,1]
t 1.00e+00
x 0.00e+00
y -1.78e-15
z 1.78e-15

(note that the result is the four-velocity of an object at rest, as expected, for we use passive
transforms by default). However, things are different if we wish to consider many four-vectors
in one R object. A vector V of four-velocities is a matrix: each row of V is a four-velocity. In
the package we represent this with objects of class 4vel. Because a vector is treated (almost)
as a one-column matrix in R, and the four-velocities are rows, we need to take a transpose in
some sense.

> u <- 1:7 # speed in the x-direction [c=10]
> jj <- cbind(gam(u),gam(u)*u,0,0)
> (U <- as.4vel(jj))

A vector of four-velocities (speed of light = 10)
t x y z

[1,] 1.01 1.01 0 0
[2,] 1.02 2.04 0 0
[3,] 1.05 3.14 0 0
[4,] 1.09 4.36 0 0
[5,] 1.15 5.77 0 0
[6,] 1.25 7.50 0 0
[7,] 1.40 9.80 0 0

14 The lorentz package

Now a boost, also in the x-direction:

> (B <- boost(as.3vel(c(6,0,0)))) # 60% speed of light

t x y z
t 1.25 -0.075 0 0
x -7.50 1.250 0 0
y 0.00 0.000 1 0
z 0.00 0.000 0 1

Note the asymmetry of B, in this case reflecting the speed of light being 10 (but note that
boost matrices are not always symmetrical, even if c = 1).
To effect a passive boost we need to multiply each row of U by the transpose of the boost
matrix B:

> U %*% t(B)

t x y z
[1,] 1.18 -6.28 0 0
[2,] 1.12 -5.10 0 0
[3,] 1.07 -3.93 0 0
[4,] 1.04 -2.73 0 0
[5,] 1.01 -1.44 0 0
[6,] 1.00 0.00 0 0
[7,] 1.02 1.75 0 0

we can verify that the above is at least plausible:

> is.consistent.4vel(U %*% t(B))

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE

the above shows that the four velocities U , as observed by an observer corresponding to boost
B, satisfies U iUi = −c2. Anyway, in this context we really ought to use tcrossprod():

> tcrossprod(U,B)

t x y z
[1,] 1.18 -6.28 0 0
[2,] 1.12 -5.10 0 0
[3,] 1.07 -3.93 0 0
[4,] 1.04 -2.73 0 0
[5,] 1.01 -1.44 0 0
[6,] 1.00 0.00 0 0
[7,] 1.02 1.75 0 0

Robin K. S. Hankin 15

which would be preferable (because this idiom does not require one to take a transpose)
although the speed increase is unlikely to matter much because B is only 4 × 4.
The above transforms were passive: we have some four-vectors measured in my rest frame,
and we want to see what these are four-vectors as measured by my friend, who is moving in
the positive x direction at 60% of the speed of light (remember that c = 10). See how the
x-component of the transformed four-velocity is negative, because in my friend’s rest frame,
the four velocities are pointing backwards.
To effect an active transform we need to take the matrix inverse of B:

> solve(B)

t x y z
t 1.25 0.075 0 0
x 7.50 1.250 0 0
y 0.00 0.000 1 0
z 0.00 0.000 0 1

and then

> tcrossprod(U,solve(B))

t x y z
[1,] 1.33 8.79 0 0
[2,] 1.43 10.21 0 0
[3,] 1.55 11.79 0 0
[4,] 1.69 13.64 0 0
[5,] 1.88 15.88 0 0
[6,] 2.13 18.75 0 0
[7,] 2.49 22.75 0 0

In the above, note how the positive x-component of the four-velocity is increased because we
have actively boosted it. We had better check the result for consistency:

> is.consistent.4vel(tcrossprod(U,solve(B)))

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE

7. Multiple boosts
If we are considering multiple boosts, it is important to put them in the correct order. First
we will do some passive boosts.

> sol(100)

[1] 100

16 The lorentz package

> B1 <- boost(r3vel(1)) %*% boost(r3vel(1))
> B2 <- boost(r3vel(1)) %*% boost(r3vel(1))
> (U <- r4vel(5))

A vector of four-velocities (speed of light = 100)
t x y z

[1,] 1.99 -162.4 46.3 34.32
[2,] 2.58 149.0 185.0 -3.07
[3,] 1.75 -110.4 -18.4 -90.19
[4,] 1.70 55.1 -88.3 90.15
[5,] 2.62 -205.6 98.2 81.53

Successive boosts are effected by matrix multiplication; there are at least four equivalent R
constructions:

> U %*% t(B1) %*% t(B2)

t x y z
[1,] 11.09 -601 -844 -383
[2,] 3.00 -70 -166 -218
[3,] 13.98 -639 -1087 -594
[4,] 7.75 -239 -697 -220
[5,] 12.23 -706 -911 -394

> U %*% t(B2 %*% B1) # note order of operations

t x y z
[1,] 11.09 -601 -844 -383
[2,] 3.00 -70 -166 -218
[3,] 13.98 -639 -1087 -594
[4,] 7.75 -239 -697 -220
[5,] 12.23 -706 -911 -394

> tcrossprod(U, B2 %*% B1)

t x y z
[1,] 11.09 -601 -844 -383
[2,] 3.00 -70 -166 -218
[3,] 13.98 -639 -1087 -594
[4,] 7.75 -239 -697 -220
[5,] 12.23 -706 -911 -394

> U %>% tcrossprod(B2 %*% B1)

t x y z
[1,] 11.09 -601 -844 -383

Robin K. S. Hankin 17

[2,] 3.00 -70 -166 -218
[3,] 13.98 -639 -1087 -594
[4,] 7.75 -239 -697 -220
[5,] 12.23 -706 -911 -394

(in the above, note that the result is the same in each case).

A warning

It is easy to misapply matrix multiplication in this context. Note carefully that the following
natural idiom is incorrect:

> U %*% B # Young Frankenstein: Do Not Use This Brain!

t x y z
[1,] 1220 -203.2 46.3 34.32
[2,] -1115 186.1 185.0 -3.07
[3,] 830 -138.1 -18.4 -90.19
[4,] -411 68.7 -88.3 90.15
[5,] 1545 -257.1 98.2 81.53

> ## The above idiom is incorrect. See
> ## https://www.youtube.com/watch?v=m7-bMBuVmHo&t=1s
> ## (in particular @1:08) for a technical explanation of why
> ## this is a Very Bad Idea (tm).

It is not clear to me that the idiom above has any meaning at all.

8. The stress-energy tensor
The stress-energy tensor (sometimes the energy-momentum tensor) is a generalization and
combination of the classical concepts of density, energy flux, and the classical stress ten-
sor (Schutz 1985). It is a contravariant tensor of rank two, usually represented as a symmetric
4 × 4 matrix. The lorentz package includes functionality for applying Lorentz transforms to
the stress energy tensor.

> sol(1) # revert to natural units

[1] 1

> D <- dust(1) # Dust is the simplest nontrivial SET, with
> D # only one nonzero component

t x y z
t 1 0 0 0
x 0 0 0 0
y 0 0 0 0
z 0 0 0 0

18 The lorentz package

The stress-energy tensor is usually written with two upstairs (contravariant) indices, as in T αβ;
it may be transformed using the transform_uu() function:

> B <- boost(as.3vel(c(0.0,0.8,0.0)))
> transform_uu(D,B)

t x y z
t 2.78 0 -2.22 0
x 0.00 0 0.00 0
y -2.22 0 1.78 0
z 0.00 0 0.00 0

In this reference frame, the dust is not at rest: the stress-energy tensor has components
corresponding to nonzero pressure and momentum transfer, and the [t, t] component is greater,
at 2.78, than its rest value of 1. Note that the [t, y] component is negative as we use passive
transforms. If one wants to consider the stress-energy tensor with downstairs indices (here
we will use a photon gas), we need to use transform_dd():

> pg <- photongas(3)
> pg

t x y z
t 3 0 0 0
x 0 1 0 0
y 0 0 1 0
z 0 0 0 1

> transform_uu(pg,B)

t x y z
t 10.11 0 -8.89 0
x 0.00 1 0.00 0
y -8.89 0 8.11 0
z 0.00 0 0.00 1

again we see that the [0, 0] component is larger than its rest value, and we see nonzero off-
diagonal components which correspond to the dynamical behaviour. As a consistency check
we can verify that this is the same as transforming the SET with upstairs indices, using the
lower() and raise() functions:

> raise(transform_dd(lower(pg),lower(B)))

t x y z
t 10.11 0 -8.89 0
x 0.00 1 0.00 0
y -8.89 0 8.11 0
z 0.00 0 0.00 1

Robin K. S. Hankin 19

> raise(transform_dd(lower(pg),lower(B))) - transform_uu(pg,B) #zero to numerical precision

t x y z
t 0 0 0 0
x 0 0 0 0
y 0 0 0 0
z 0 0 0 0

One of the calls to lower() is redundant; for a photon gas, raising or lowering both indices
does not change the components as the Minkowski metric is symmetric and orthogonal.

8.1. Successive boosts

Successive boots are represented as ordinary matrix multiplication. Again the magrittr pack-
age can be used for more readable idiom.

> B1 <- boost(as.3vel(c(0.5,-0.4,0.6)))
> B2 <- boost(as.3vel(c(0.1,-0.1,0.3)))
> pf <- perfectfluid(4,1)
> pf

t x y z
t 4 0 0 0
x 0 1 0 0
y 0 0 1 0
z 0 0 0 1

> pf %>% transform_uu(B1) %>% transform_uu(B2)

t x y z
t 38.4 -18.17 15.24 -28.2
x -18.2 9.38 -7.03 13.0
y 15.2 -7.03 6.89 -10.9
z -28.2 12.98 -10.89 21.1

> pf %>% transform_uu(B2 %*% B1) # should match

t x y z
t 38.4 -18.17 15.24 -28.2
x -18.2 9.38 -7.03 13.0
y 15.2 -7.03 6.89 -10.9
z -28.2 12.98 -10.89 21.1

Again as a consistency check, we may verify that transforming downstairs indices gives the
same result:

> lower(pf) %>% transform_dd(lower(B1) %*% lower(B2)) %>% raise()

20 The lorentz package

t x y z
t 38.4 -18.17 15.24 -28.2
x -18.2 9.38 -7.03 13.0
y 15.2 -7.03 6.89 -10.9
z -28.2 12.98 -10.89 21.1

(note that the matrix representation of the Lorentz transforms requires that the order of
multiplication be reversed for successive covariant transforms, so B1 and B2 must be swapped).

8.2. Speed of light and the stress-energy tensor

Here I will perform another consistency check, this time with non-unit speed of light, for a
perfect fluid:

> sol(10)

[1] 10

> pf_rest <- perfectfluid(1,4)
> pf_rest

t x y z
t 1.04 0.00 0.00 0.00
x 0.00 0.04 0.00 0.00
y 0.00 0.00 0.04 0.00
z 0.00 0.00 0.00 0.04

Thus pf_rest is the stress energy for a perfect fluid at rest in a particular frame F . We
may now consider the same perfect fluid, but moving with a three velocity of (3, 4, 5)′: with
respect to F :

> u <- as.3vel(3:5)
> pf_moving <- perfectfluid(1,4,u)
> pf_moving

t x y z
t 2.08 6.24 8.32 10.4
x 6.24 18.76 24.96 31.2
y 8.32 24.96 33.32 41.6
z 10.40 31.20 41.60 52.0

The consistency check is to verify that transforming to a frame in which the fluid is at rest
will result in a stress-energy tensor that matches pf_rest:

> transform_uu(perfectfluid(1,4,u),boost(u))

Robin K. S. Hankin 21

t x y z
t 1.04e+00 -1.22e-16 -6.41e-16 1.64e-15
x -1.16e-15 4.00e-02 -3.88e-15 -7.50e-15
y -2.88e-15 6.28e-15 4.00e-02 -2.90e-15
z -3.91e-15 1.60e-15 7.69e-15 4.00e-02

thus showing agreement to within numerical precision.

9. Photons
It is possible to define the four-momentum of photons by specifying their three-velocity and
energy, and using as.photon():

> sol(1)

[1] 1

> (A <- as.photon(as.3vel(cbind(0.9,1:5/40,5:1/40))))

E p_x p_y p_z
[1,] 1 0.990 0.0275 0.1375
[2,] 1 0.992 0.0551 0.1103
[3,] 1 0.993 0.0828 0.0828
[4,] 1 0.992 0.1103 0.0551
[5,] 1 0.990 0.1375 0.0275

above, A is a vector of four-momentum of five photons, all of unit energy, each with a null
world line. They are all moving approximately parallel to the x-axis. We can check that this
is indeed a null vector:

> inner4(A)

[1] 1.45e-16 2.56e-17 -5.55e-17 2.56e-17 1.45e-16

showing that the vectors are indeed null to numerical precision. What do these photons look
like in a frame moving along the x-axis at 0.7c?

> tcrossprod(A,boost(as.3vel(c(0.7,0,0))))

t x y z
[1,] 0.430 0.406 0.0275 0.1375
[2,] 0.428 0.409 0.0551 0.1103
[3,] 0.427 0.410 0.0828 0.0828
[4,] 0.428 0.409 0.1103 0.0551
[5,] 0.430 0.406 0.1375 0.0275

22 The lorentz package

Above, see how the photons have lost the majority of their energy due to redshifting. Blue
shifting is easy to implement as either a passive transform:

> tcrossprod(A,boost(as.3vel(c(-0.7,0,0))))

t x y z
[1,] 2.37 2.37 0.0275 0.1375
[2,] 2.37 2.37 0.0551 0.1103
[3,] 2.37 2.37 0.0828 0.0828
[4,] 2.37 2.37 0.1103 0.0551
[5,] 2.37 2.37 0.1375 0.0275

or an active transform:

> tcrossprod(A,solve(boost(as.3vel(c(0.7,0,0)))))

t x y z
[1,] 2.37 2.37 0.0275 0.1375
[2,] 2.37 2.37 0.0551 0.1103
[3,] 2.37 2.37 0.0828 0.0828
[4,] 2.37 2.37 0.1103 0.0551
[5,] 2.37 2.37 0.1375 0.0275

giving the same result.

9.1. Reflection in mirrors

Gjurchinovski (2004) discusses reflection of light from a uniformly moving mirror and here I
show how the lorentz package can illustrate some of his insights. We are going to take the
five photons defined above and reflect them in an oblique mirror which is itself moving at half
the speed of light along the x-axis. The first step is to define the mirror m, and the boost B
corresponding to its velocity:

> m <- c(1,1,1)
> B <- boost(as.3vel(c(0.5,0,0)))

Above, the three-vector m is parallel to the normal vector of the mirror and B shows the
Lorentz boost needed to bring it to rest. We are going to reflect these photons in this mirror.
The R idiom for the reflection is performed using a sequence of transforms. First, transform
the photons’ four-momentum to a frame in which the mirror is at rest:

> A

E p_x p_y p_z
[1,] 1 0.990 0.0275 0.1375
[2,] 1 0.992 0.0551 0.1103
[3,] 1 0.993 0.0828 0.0828
[4,] 1 0.992 0.1103 0.0551
[5,] 1 0.990 0.1375 0.0275

Robin K. S. Hankin 23

> (A <- as.4mom(A %*% t(B)))

E p_x p_y p_z
[1,] 0.583 0.566 0.0275 0.1375
[2,] 0.582 0.569 0.0551 0.1103
[3,] 0.581 0.569 0.0828 0.0828
[4,] 0.582 0.569 0.1103 0.0551
[5,] 0.583 0.566 0.1375 0.0275

Above, see how the photons have lost energy because of a redshift (the as.4mom() function
has no effect other than changing the column names). Next, reflect the photons in the mirror
(which is at rest):

> (A <- reflect(A,m))

E p_x p_y p_z
[1,] 0.583 0.0786 -0.460 -0.350
[2,] 0.582 0.0793 -0.434 -0.379
[3,] 0.581 0.0795 -0.407 -0.407
[4,] 0.582 0.0793 -0.379 -0.434
[5,] 0.583 0.0786 -0.350 -0.460

Above, see how the reflected photons have a reduced the x-component of momentum; but
have acquired a substantial y- and z- component. Finally, we transform back to the original
reference frame. Observe that this requires an active transform which means that we need to
use the matrix inverse of B:

> (A <- as.4mom(A %*% solve(t(B))))

E p_x p_y p_z
[1,] 0.719 0.427 -0.460 -0.350
[2,] 0.718 0.427 -0.434 -0.379
[3,] 0.717 0.427 -0.407 -0.407
[4,] 0.718 0.427 -0.379 -0.434
[5,] 0.719 0.427 -0.350 -0.460

Thus in the original frame, the photons have lost about a quarter of their energy as a result of
a Doppler effect: the mirror was receding from the source. The photons have imparted energy
to the mirror as a result of mechanical work. It is possible to carry out the same operations
in one line:

> A <- as.photon(as.3vel(cbind(0.9,1:5/40,5:1/40)))
> A %>% tcrossprod(B) %>% reflect(m) %>% tcrossprod(solve(B)) %>% as.4mom

E p_x p_y p_z
[1,] 0.719 0.427 -0.460 -0.350

24 The lorentz package

[2,] 0.718 0.427 -0.434 -0.379
[3,] 0.717 0.427 -0.407 -0.407
[4,] 0.718 0.427 -0.379 -0.434
[5,] 0.719 0.427 -0.350 -0.460

9.2. Disco ball

It is easy to define a disco ball, which is a sphere covered in mirrors. For the purposes of
exposition, we will use a rather shabby ball with only 7 mirrors:

> dfun <- function(n){matrix(rnorm(n*3),ncol=3) %>% sweep(1, sqrt(rowSums(.^2)),`/`)}
> (disco <- dfun(7))

[,1] [,2] [,3]
[1,] -0.8255 0.5638 -0.0246
[2,] 0.4893 -0.0811 0.8683
[3,] -0.0654 0.4519 0.8897
[4,] -0.6690 -0.2310 -0.7065
[5,] -0.7243 -0.6781 -0.1248
[6,] -0.5078 -0.4407 0.7402
[7,] 0.5224 -0.4929 0.6958

Then we define a unit-energy photon moving parallel to the x-axis, and reflect it in the disco
ball:

> p <- as.photon(c(1,0,0))
> reflect(p,disco)

E p_x p_y p_z
x 1 -0.3630 0.9309 -0.0406
x 1 0.5212 0.0794 -0.8497
x 1 0.9914 0.0591 0.1164
x 1 0.1049 -0.3091 -0.9452
x 1 -0.0491 -0.9823 -0.1807
x 1 0.4843 -0.4476 0.7518
x 1 0.4542 0.5150 -0.7270

(above, p is a photon moving along the x-axis; standard R recycling rules imply that we
effectively have one photon per mirror in disco. See how the photons’ energy is unchanged
by the reflection). We might ask what percentage of photons are reflected towards the source;
but to do this we would need a somewhat more stylish disco ball, here with 1000 mirrors:

> table(reflect(p,dfun(1000))[,2]>0) # should be TRUE with probability sqrt(0.5)

FALSE TRUE
294 706

Robin K. S. Hankin 25

(compare the expected value of 1000/
√

2 ≃ 707). But it is perhaps more fun to consider a
relativistic disco in which the mirror ball moves at 0.5c:

> B <- boost(as.3vel(c(0.5,0,0)))
> p %>% tcrossprod(B) %>% reflect(disco) %>% tcrossprod(solve(B))

t x y z
x 0.546 0.0913 0.5375 -0.0235
x 0.840 0.6808 0.0458 -0.4906
x 0.997 0.9943 0.0341 0.0672
x 0.702 0.4033 -0.1785 -0.5457
x 0.650 0.3006 -0.5671 -0.1043
x 0.828 0.6562 -0.2584 0.4340
x 0.818 0.6361 0.2973 -0.4197

Above, note the high energy of the photon in the third row. This is because the third mirror
of disco is such that the photon hits it with grazing incidence; this means that the receding
of the mirror is almost immaterial. Note further that a spinning disco ball would give the
same (instantaneous) results.

9.3. Mirrors and rotation-boost coupling

Consider the following situation: we take a bunch of photons which in a certain reference
frame are all moving (almost) parallel to the x-axis. Then we reflect the photons from a
mirror which is moving with a composition of pure boosts, and examine the reflected light in
their original reference frame. The R idiom for this would be:

> sol(1)

[1] 1

> light_start <- as.photon(as.3vel(cbind(0.9,1:5/40,5:1/40)))
> m <- c(1,0,0) # mirror normal to x-axis
> B1 <- boost(as.3vel(c(-0.5, 0.1, 0.0)))
> B2 <- boost(as.3vel(c(0.2, 0.0, 0.0)))
> B3 <- boost(as.3vel(c(0.0, 0.0, 0.6)))
> B <- B1 %*% B2 %*% B3 # matrix multiplication is associative!
> light <- light_start %*% t(B)
> light <- reflect(light,m)
> light <- as.4mom(light %*% solve(t(B)))
> light

E p_x p_y p_z
[1,] 2.30 -2.11 0.119 0.920
[2,] 2.31 -2.13 0.147 0.897
[3,] 2.32 -2.14 0.175 0.874
[4,] 2.32 -2.15 0.203 0.849
[5,] 2.33 -2.16 0.230 0.824

26 The lorentz package

See how the photons have picked up momentum in the y- and z- direction, even though
the mirror is oriented perpendicular to the x-axis (in its own frame). Again it is arguably
preferable to use pipes:

> light_start %>% tcrossprod(B) %>% reflect(m) %>% tcrossprod(solve(B)) %>% as.4mom

E p_x p_y p_z
[1,] 2.30 -2.11 0.119 0.920
[2,] 2.31 -2.13 0.147 0.897
[3,] 2.32 -2.14 0.175 0.874
[4,] 2.32 -2.15 0.203 0.849
[5,] 2.33 -2.16 0.230 0.824

Compare when the speed of light is infinite:

> sol(Inf)

[1] Inf

> light_start <- as.photon(as.3vel(cbind(0.9,1:5/40,5:1/40)))
> B1 <- boost(as.3vel(c(-0.5, 0.1, 0.0)))
> B2 <- boost(as.3vel(c(0.2, 0.0, 0.0)))
> B3 <- boost(as.3vel(c(0.0, 0.0, 0.6)))
> B <- B1 %*% B2 %*% B3
> light_start

E p_x p_y p_z
[1,] 0 0.990 0.0275 0.1375
[2,] 0 0.992 0.0551 0.1103
[3,] 0 0.993 0.0828 0.0828
[4,] 0 0.992 0.1103 0.0551
[5,] 0 0.990 0.1375 0.0275

> light_start %>% tcrossprod(B) %>% reflect(m) %>% tcrossprod(solve(B)) %>% as.4mom

E p_x p_y p_z
[1,] 0 -0.990 0.0275 0.1375
[2,] 0 -0.992 0.0551 0.1103
[3,] 0 -0.993 0.0828 0.0828
[4,] 0 -0.992 0.1103 0.0551
[5,] 0 -0.990 0.1375 0.0275

Note that, in the infinite light speed case, the energy of the photons is zero (photons have zero
rest mass); further observe that in this classical case, the effect of the mirror is to multiply the
x-momentum by −1 and leave the other components unchanged, as one might expect from a
mirror perpendicular to (1, 0, 0).

Robin K. S. Hankin 27

10. Three-velocities
In contrast to four-velocities, three-velocities do not form a group under composition as the
velocity addition law is not associative (Ungar 2006). Instead, three-velocity composition has
an algebraic structure known as a gyrogroup (this observation was the original motivation for
the package). Ungar shows that the velocity addition law for three-velocities is

u ⊕ v = 1
1 + u · v

{
u + v

γu
+ γu (u · v) u

1 + γu

}
(1)

where γu = (1 − u · u)−1/2 and we are assuming c = 1. Ungar goes on to show that, in
general, u ⊕ v ̸= v ⊕ u and (u ⊕ v) ⊕ w ̸= u ⊕ (v ⊕ w). He also defines the binary operator ⊖
as u ⊖ v = u ⊕ (−v), and implicitly defines ⊖u ⊕ v to be (−u) ⊕ v. If we have

gyr [u, v] x = − (u ⊕ v) ⊕ (u ⊕ (v ⊕ x)) (2)

then

u ⊕ v = gyr [u, v] (v ⊕ u) (3)
gyr [u, v] x · gyr [u, v] y = x · y (4)

gyr [u, v] (x ⊕ y) = gyr [u, v] x ⊕ gyr [u, v] y (5)
(gyr [u, v])−1 = (gyr [v, u]) (6)
u ⊕ (v ⊕ w) = (u ⊕ v) ⊕ gyr [u, v] w (7)
(u ⊕ v) ⊕ w = u ⊕ (v ⊕ gyr [v, u] w) (8)

Consider the following R session:

> sol(1)

[1] 1

> u <- as.3vel(c(-0.7,+0.2,-0.3))
> v <- as.3vel(c(+0.3,+0.3,+0.4))
> w <- as.3vel(c(+0.1,+0.3,+0.8))
> x <- as.3vel(c(-0.2,-0.1,-0.9))
> u

A vector of three-velocities (speed of light = 1)
x y z

[1,] -0.7 0.2 -0.3

Here we have three-vectors u etc. We can see that u and v do not commute:

> u+v

28 The lorentz package

A vector of three-velocities (speed of light = 1)
x y z

[1,] -0.545 0.482 -0.00454

> v+u

A vector of three-velocities (speed of light = 1)
x y z

[1,] -0.429 0.572 0.132

(the results differ). We can use equation 3

> (u+v)-gyr(u,v,v+u)

A vector of three-velocities (speed of light = 1)
x y z

[1,] 1.77e-16 -7.08e-16 1.23e-16

showing agreement to within numerical error. It is also possible to use the functional idiom
in which we define f() to be the map x 7→ gyr [u, v] x. In R:

> f <- gyrfun(u,v)
> (u+v)-f(v+u) # should be zero

A vector of three-velocities (speed of light = 1)
x y z

[1,] 1.77e-16 -7.08e-16 1.23e-16

Function gyrfun() is vectorized, which means that it plays nicely with (R) vectors. Consider

> u9 <- r3vel(9)
> u9

A vector of three-velocities (speed of light = 1)
x y z

[1,] -0.6635 -0.1850 -0.0324
[2,] 0.7232 0.3007 0.0448
[3,] -0.4816 -0.2698 0.0903
[4,] 0.7186 0.5215 0.1149
[5,] -0.4988 -0.5469 0.4781
[6,] -0.0446 0.7934 -0.4839
[7,] 0.4225 0.6831 -0.2474
[8,] -0.5546 -0.1326 0.4232
[9,] 0.0366 0.0748 0.4407

Then we can create a vectorized gyrofunction:

Robin K. S. Hankin 29

> f <- gyrfun(u9,v)
> f(x)

A vector of three-velocities (speed of light = 1)
x y z

[1,] -0.0282 -7.04e-02 -0.924
[2,] -0.3568 -1.36e-01 -0.845
[3,] -0.0692 -2.67e-02 -0.924
[4,] -0.3503 -1.89e-01 -0.838
[5,] 0.0444 1.59e-01 -0.913
[6,] -0.2297 -4.52e-01 -0.776
[7,] -0.3268 -3.10e-01 -0.811
[8,] 0.0130 3.85e-06 -0.927
[9,] -0.1409 -5.01e-02 -0.915

Note that the package vectorization is transparent when using syntactic sugar:

> u9+x

A vector of three-velocities (speed of light = 1)
x y z

[1,] -0.7436 -0.2345 -0.5826
[2,] 0.6411 0.2532 -0.6615
[3,] -0.6319 -0.3444 -0.6273
[4,] 0.6860 0.5266 -0.4421
[5,] -0.6903 -0.6791 -0.0511
[6,] -0.0952 0.7096 -0.6909
[7,] 0.3115 0.6168 -0.6976
[8,] -0.8231 -0.2462 -0.3690
[9,] -0.2550 -0.0524 -0.7806

(here, the addition operates using R’s standard recycling rules).

10.1. Associativity

Three velocity addition is not associative:

> (u+v)+w

A vector of three-velocities (speed of light = 1)
x y z

[1,] -0.465 0.655 0.501

> u+(v+w)

A vector of three-velocities (speed of light = 1)
x y z

[1,] -0.549 0.667 0.416

30 The lorentz package

But we can use equations 7 and 8:

> (u+(v+w)) - ((u+v)+gyr(u,v,w))

A vector of three-velocities (speed of light = 1)
x y z

[1,] 6.92e-16 -1.38e-15 -6.92e-16

> ((u+v)+w) - (u+(v+gyr(v,u,w)))

A vector of three-velocities (speed of light = 1)
x y z

[1,] 0 0 5.35e-16

10.2. Visualization of noncommutativity and nonassociativity of three-
velocities

Consider the following three-velocities:

> u <- as.3vel(c(0.4,0,0))
> v <- seq(as.3vel(c(0.4,-0.2,0)), as.3vel(c(-0.3,0.9,0)),len=20)
> w <- as.3vel(c(0.8,-0.4,0))

Objects v and w are single three-velocities, and object v is a vector of three velocities. We can
see the noncommutativity of three velocity addition in figures 1 and 2, and the nonassociativity
in figure 3.

10.3. The magrittr package: pipes

Three velocities in the lorentz package work nicely with magrittr. If we define

> u <- as.3vel(c(+0.5,0.1,-0.2))
> v <- as.3vel(c(+0.4,0.3,-0.2))
> w <- as.3vel(c(-0.3,0.2,+0.2))

Then pipe notation operates as expected:

> jj1 <- u %>% add(v)
> jj2 <- u+v
> speed(jj1-jj2)

[1] 2.21e-16

The pipe operator is left associative:

Robin K. S. Hankin 31

> comm_fail1(u=u, v=v)

Failure of the parallelogram law

leg 1
leg 2
leg 3
leg 4
c=1

Figure 1: Failure of the commutative law for velocity composition in special relativity. The
arrows show successive velocity boosts of +u (purple), +v (black), −u (red), and −v (blue)
for u, v as defined above. Velocity u is constant, while v takes a sequence of values. If velocity
addition is commutative, the four boosts form a closed quadrilateral; the thick arrows show
a case where the boosts almost close and the boosts nearly form a parallelogram. The blue
dots show the final velocity after four successive boosts; the distance of the blue dot from the
origin measures the combined velocity, equal to zero in the classical limit of low speeds. The
discrepancy becomes larger and larger for the faster elements of the sequence v

32 The lorentz package

> comm_fail2(u=u, v=v)

Failure of the parallelogram law

u
v
mismatch
c=1

Figure 2: Another view of the failure of the commutative law in special relativity. The black
arrows show velocity boosts of u and the blue arrows show velocity boosts of v, with u, v
as defined above; u is constant while v takes a sequence of values. If velocity addition is
commutative, then u+v = v+u and the two paths end at the same point: the parallelogram
is closed. The red lines show the difference between u + v and v + u

Robin K. S. Hankin 33

> ass_fail(u=u, v=v, w=w, bold=10)

Failure of associative property

u+(v+w)
(u+v)+w
mismatch
c=1

Figure 3: Failure of the associative law for velocity composition in special relativity. The
arrows show successive boosts of u followed by v + w (black lines), and u + v followed by w
(blue lines), for u, v, w as defined above; u and w are constant while v takes a sequence of
values. The mismatch between u + (v + w) and (u + v) + w is shown in red

34 The lorentz package

> jj1 <- u %>% add(v) %>% add(w)
> jj2 <- (u+v)+w
> speed(jj1-jj2)

[1] 7.39e-17

If we want right associative addition, the pipe operator needs brackets:

> jj1 <- u %>% add(v %>% add(w))
> jj2 <- u+(v+w)
> speed(jj1-jj2)

[1] 3.45e-17

10.4. Numerical verification

Here I provide numerical verification of equations 3 to 8. If we have

> x <- as.3vel(c(0.7, 0.0, -0.7))
> y <- as.3vel(c(0.1, 0.3, -0.6))
> u <- as.3vel(c(0.0, 0.8, +0.1)) # x,y,u: single three-velocities
> v <- r3vel(5,0.9)
> w <- r3vel(5,0.8) # v,w: vector of three-velocities
> f <- gyrfun(u,v)
> g <- gyrfun(v,u)

Then we can calculate the difference between the left hand side and right hand side numeri-
cally:

> max(speed((u+v) - f(v+u))) # equation 3

[1] 3.49e-13

> max(abs(prod3(f(x),f(y)) - prod3(x,y))) # equation 4

[1] 5.94e-15

> max(speed(f(x+y) - (f(x)+f(y)))) # equation 5

[1] 3.81e-12

> max(speed(f(g(x)) - g(f(x)))) # equation 6

[1] 7.3e-13

Robin K. S. Hankin 35

> max(speed((u+(v+w)) - ((u+v)+f(w)))) # equation 7

[1] 6.25e-14

> max(speed(((u+v)+w) - (u+(v+g(w))))) # equation 8

[1] 2.78e-14

(all zero to numerical precision).

11. Conclusions
The lorentz package furnishes some functionality for manipulating four-vectors and three-
velocities in the context of special relativity. The R idiom is relatively natural and the
package has been used to illustrate different features of relativistic kinematics.

References

Gjurchinovski A (2004). “Reflection of light from a uniformly moving mirror.” American
Journal of Physics, 72(10), 1316–1324.

Goldstein H (1980). Classical mechanics. Second edition. Addison-Wesley.

Hankin RKS (2022). “A systematic search for a three-velocity gyrodistributive law in special
relativity with the lorentz R package.” doi:10.48550/ARXIV.2212.07005. URL https:
//arxiv.org/abs/2212.07005.

Horwitz P, Taylor EF, Barowy W (1994). “Teaching special relativity with a computer.”
Computers in Physics, 8(1), 92–97.

Schutz B (1985). A first course in general relativity. Cambridge University Press.

Sherin ZW, Cheu R, Tan P, Kortemeyer G (2016). “Visualizing relativity: the OpenRelativ-
ity project.” American Journal of Physics, 84(5), 369–374. URL https://github.com/
MITGameLab/OpenRelativity/.

Ungar AA (2006). “Thomas precession: a kinematic effect of the algebra of Einstein’s ve-
locity addition law. Comments on ‘Deriving relativistic momentum and energy: II. Three-
dimensional case’.” European Journal of Physics, 27, L17–L20.

Affiliation:
Robin K. S. Hankin
University of Stirling
E-mail: hankin.robin@gmail.com

https://doi.org/10.48550/ARXIV.2212.07005
https://arxiv.org/abs/2212.07005
https://arxiv.org/abs/2212.07005
https://github.com/MITGameLab/ OpenRelativity/
https://github.com/MITGameLab/ OpenRelativity/
mailto:hankin.robin@gmail.com

	Introduction
	Lorentz transforms: active and passive
	Successive Lorentz transforms
	Units in which c is not 1
	Changing units

	Infinite speed of light
	Vectorization
	Multiple boosts
	The stress-energy tensor
	Successive boosts
	Speed of light and the stress-energy tensor

	Photons
	Reflection in mirrors
	Disco ball
	Mirrors and rotation-boost coupling

	Three-velocities
	Associativity
	Visualization of noncommutativity and nonassociativity of three-velocities
	The magrittr package: pipes
	Numerical verification

	Conclusions

