
Package: hyper2 (via r-universe)
September 3, 2024

Type Package

Title The Hyperdirichlet Distribution, Mark 2

Version 3.1-0

Maintainer Robin K. S. Hankin <hankin.robin@gmail.com>

Description A suite of routines for the hyperdirichlet distribution
and reified Bradley-Terry; supersedes the 'hyperdirichlet'
package; uses 'disordR' discipline
<doi:10.48550/ARXIV.2210.03856>. To cite in publications
please use Hankin 2017 <doi:10.32614/rj-2017-061>, and for
Generalized Plackett-Luce likelihoods use Hankin 2024
<doi:10.18637/jss.v109.i08>.

License GPL (>= 2)

LazyData yes

Depends methods, cubature, R (>= 3.5.0)

Suggests knitr, markdown, rmarkdown, testthat, bookdown, rticles, covr

VignetteBuilder knitr

Imports Rcpp (>= 1.0-7), partitions, disordR (>= 0.0-9), alabama,
calibrator, Rdpack, magrittr

LinkingTo Rcpp

URL https://github.com/RobinHankin/hyper2,

https://robinhankin.github.io/hyper2/

BugReports https://github.com/RobinHankin/hyper2/issues

RoxygenNote 7.1.1

RdMacros Rdpack

Repository https://robinhankin.r-universe.dev

RemoteUrl https://github.com/robinhankin/hyper2

RemoteRef HEAD

RemoteSha de2b1c3e36f71fb28c8fdb599b3a9476ccec1ffa

1

https://doi.org/10.48550/ARXIV.2210.03856
https://doi.org/10.32614/rj-2017-061
https://doi.org/10.18637/jss.v109.i08
https://github.com/RobinHankin/hyper2
https://robinhankin.github.io/hyper2/
https://github.com/RobinHankin/hyper2/issues

2 Contents

Contents
hyper2-package . 3
as.ordertable . 4
attemptstable2supp3 . 5
B . 6
balance . 8
baseball . 9
carcinoma . 10
character_to_number . 11
chess . 12
consistency . 13
constructor . 14
counterstrike . 15
cplusplus . 16
curling . 17
dirichlet . 18
eurodance . 20
eurovision . 21
Extract . 22
fillup . 24
formula1 . 25
ggol . 26
gradient . 28
handover . 30
head.hyper2 . 31
hepatitis . 32
hyper2 . 33
hyper3 . 34
icons . 37
increment . 38
interzonal . 40
javelin . 41
jester . 42
karate . 43
karpov_kasparov_anand . 44
keep . 45
length.hyper2 . 46
loglik . 47
masterchef . 49
matrix2supp . 50
maxp . 51
moto . 53
mult_grid . 54
NBA . 55
Ops.hyper2 . 56
Ops.hyper3 . 57
ordertable . 58

hyper2-package 3

ordertable2points . 60
ordertable2supp . 61
ordertrans . 63
ordervec2supp3 . 66
pairwise . 68
pentathlon . 71
powerboat . 72
Print . 73
profile . 74
psubs . 75
pwa . 76
ranktable . 77
rhyper2 . 79
rhyper3 . 80
rowing . 81
rp . 82
rrace . 83
rrank . 84
skating . 87
soling . 88
summary.hyper2 . 89
suplist . 90
surfing . 92
T20 . 92
table_tennis . 93
tennis . 94
tests . 95
tidy . 97
universities . 98
volleyball . 99
volvo . 100
zapweak . 101
zipf . 102

Index 103

hyper2-package The Hyperdirichlet Distribution, Mark 2

Description

A suite of routines for the hyperdirichlet distribution and reified Bradley-Terry; supersedes the
’hyperdirichlet’ package; uses ’disordR’ discipline <doi:10.48550/ARXIV.2210.03856>. To cite in
publications please use Hankin 2017 <doi:10.32614/rj-2017-061>, and for Generalized Plackett-
Luce likelihoods use Hankin 2024 <doi:10.18637/jss.v109.i08>.

4 as.ordertable

Details

The DESCRIPTION file: This package was not yet installed at build time.

Index: This package was not yet installed at build time.
A generalization of the Dirichlet distribution, using a more computationally efficient method than
the hyperdirichlet package. The software is designed for the analysis of order statistics and team
games.

Author(s)

Robin K. S. Hankin [aut, cre] (<https://orcid.org/0000-0001-5982-0415>)

Maintainer: Robin K. S. Hankin <hankin.robin@gmail.com>

References

• R. K. S. Hankin (2010). “A Generalization of the Dirichlet Distribution”, Journal of Statistical
Software, 33(11), 1-18, doi:10.18637/jss.v033.i11

• R. K. S. Hankin 2017. “Partial Rank Data with the hyper2 Package: Likelihood Functions
for Generalized Bradley-Terry Models”. The R Journal 9:2, pages 429-439, doi:10.32614/
rj2017061

• R. K. S. Hankin 2024. “Generalized Plackett-Luce Likelihoods”, Journal of Statistical Soft-
ware, 109(8), 1-17, doi:10.18637/jss.v109.i08

Examples

icons
maxp(icons)

as.ordertable Convert an order table with DNS entries to a nice order table

Description

Given an ordertable such as F1_table_2017 which is a “wikitable” object, function as.ordertable()
returns a nicified version in which entries such as DNS are replaced with zeros. Finishing competi-
tors are assigned numbers 1 − n with no gaps; the function can be used to extract a subset of
competitors.

Function ordertable2supp() offers similar functionality but returns a hyper2 object directly.

Usage

as.ordertable(w)

Arguments

w A generalized ordertable, a wikitable

https://doi.org/10.18637/jss.v033.i11
https://doi.org/10.32614/rj-2017-061
https://doi.org/10.32614/rj-2017-061
https://doi.org/10.18637/jss.v109.i08

attemptstable2supp3 5

Details

Operates columnwise, and treats any entry not coercible to numeric as DNF.

Value

Returns an ordertable suitable for coercion to a hyper2 object.

Author(s)

Robin K. S. Hankin

See Also

ordertable,ordertable2supp

Examples

as.ordertable(F1_table_2017)
ordertable2supp(as.ordertable(F1_table_2017[1:9,]))

attemptstable2supp3 Translate attempt tables to hyper3 support functions

Description

description here

Usage

attemptstable2supp3(a, decreasing, give.supp=TRUE, dnf.last=TRUE)

Arguments

a Data frame, see details

decreasing Boolean, with TRUE meaning that the highest score wins [e.g. javelin distances]
and FALSE meaning that the lowest score wins [e.g. times for a race]

give.supp Boolean, return the support function or the order statistic

dnf.last Boolean, should NA entries count as coming last (TRUE) or be ignored (FALSE)

Details

Function attemptstable2supp3() is intended for use on attempts tables like javelin.

These objects can be generated by running script inst/javelin.Rmd, which includes some further
discussion and technical documentation, and creates file javelin.rda which resides in the data/
directory.

6 B

Value

Returns a hyper3 object

Author(s)

Robin K. S. Hankin

See Also

ordertable2supp,javelin

Examples

jj <- javelin_table[1:3,]
jj
attemptstable2supp3(jj)

B Normalizing constant for the hyperdirichlet distribution

Description

Numerical techniques for calculating the normalizing constant for the hyperdirichlet distribution

Usage

B(H, disallowed=NULL, give=FALSE, ...)
probability(H, disallowed=NULL, ...)
mgf(H, powers, ...)
dhyper2(ip,H,...)
dhyper2_e(e,H,include.Jacobian=TRUE)
mean_hyper2(H, normalize=TRUE, ...)
Jacobian(e)
e_to_p(e)
p_to_e(p)

Arguments

H Object of class hyper2

powers Vector of length dim(x) whose elements are the powers of the expectation; see
details section

disallowed Function specifying a subset of the simplex over which to integrate; default NULL
means to integrate over the whole simplex. The integration proceeds over p with
disallowed(p) evaluating to FALSE

e, p A vector; see details

B 7

ip A vector of probabilities corresponding to indep(p) where p is vector with unit
sum

include.Jacobian

Boolean, with default TRUE meaning to include the Jacobian transformation in
the evaluation, and FALSE meaning to ignore it; use FALSE for likelihood work
and TRUE for probability densities

give Boolean, with default FALSE meaning to return the value of the integral and TRUE
meaning to return the full output of adaptIntegrate()

normalize Boolean, indicates whether return value of mean_hyper2() is normalized to
have unit sum

... Further arguments passed to adaptIntegrate()

Details

• Function B() returns the normalizing constant of a hyperdirichlet likelihood function. Inter-
nally, p is converted to e (by e_to_p()) and the integral proceeds over a hypercube. This
function can be very slow, especially if disallowed is used.

• Function dhyper2(ip,H) is a probability density function on the independent components
of a unit-sum vector, that is, ip=indep(p). This function calls B() each time so might be a
performance bottleneck.

• Function probability() gives the probability of an observation from a hyperdirichlet distri-
bution satisfying !disallowed(p).

• Function mgf() is the moment generating function, taking an argument that specifies the pow-
ers of p needed: the expectation of

∏n
i=1 pi

powers[i] is returned.
• Function mean_hyper2() returns the mean value of the hyperdirichlet distribution. This is

computationally slow (consider maxp() for a measure of central tendency). The function takes
a normalize argument, not passed to adaptIntegrate(): this is Boolean with FALSE mean-
ing to return the value found by integration directly, and default TRUE meaning to normalize
so the sum is exactly 1

Value

• Function B() returns a scalar: the normalization constant
• Function dhyper2() is a probability density function over indep(p)
• Function mean() returns a k-tuple with unit sum
• Function mgf() returns a scalar equal to the expectation of p^power
• Functions is.proper() and validated() return a Boolean
• Function probability() returns a scalar, a (Bayesian) probability

Note

The adapt package is no longer available on CRAN; from 1.4-3, the package uses adaptIntegrate
of the cubature package.

Author(s)

Robin K. S. Hankin

8 balance

See Also

loglik

Examples

Two different measures of central tendency:
mean_hyper2(chess,tol=0.1) # takes ~10s to run
maxp(chess) # faster

Using the 'disallowed' argument typically results in slow run times;
use high tol for speed:

probability(chess,disallowed=function(p){p[1]>p[2]},tol=0.5)
probability(chess,disallowed=function(p){p[1]<p[2]},tol=0.5)

Above should sum to 1 [they are exclusive and exhaustive events]

balance Enforce the zero power sum condition

Description

Sometimes a hyper2 object is unbalanced in the sense that its powers do not sum to zero. This is
rectified by balance(), which modifies the power of the bracket corresponding to the sum of all
pnames accordingly.

Usage

balance(H)

Arguments

H object of class hyper2 or hyper3

Details

This is just a convenience function, all it does is

H[pnames(H)] <- 0
H[pnames(H)] <- -sum(pnames(H))
H

Package vignette zeropower discusses the zero power sum condition.

baseball 9

Value

Returns a balanced hyper2 object

Author(s)

Robin K. S. Hankin

See Also

print.hyper2

Examples

H <- hyper2()
H["a"] <- 6
H["b"] <- 3
H[c("a","c")] <- 7
H <- balance(H)
maxp(H)

baseball Baseball results, following Agresti

Description

Results from repeated games among seven baseball teams, following Agresti

Usage

data(baseball)

Format

A hyper2 object that gives a likelihood function

Details

Agresti discusses results from seven baseball teams in the 1987 season of the Eastern Division of
the American League.

A results table and likelihood function is given in the package as baseball_table and baseball
respectively. The maximum likelihood estimate is given as baseball_maxp, but can be reproduced
by maxp(baseball).

These objects can be generated by running script inst/home_advantage.Rmd, which includes some
further discussion and technical documentation, and creates file baseball.rda which resides in the
data/ directory.

10 carcinoma

References

A. Agresti 2002. “Categorical data analysis”. John Wiley and Sons; p437

See Also

hyper3

Examples

baseball_table
baseball_table[1:3,1:3]
home_away3(baseball_table[1:3,1:3],1.3)

carcinoma Carcinoma dataset discussed by Agresti

Description

A dataset considered by Agresti. Seven clinicians are asked whether they see evidence for carci-
noma on different patients.

Usage

data(carcinoma)

Format

A hyper2 object that gives a likelihood function

Details

Object carcinoma_table is drawn from Agresti. The first seven columns correspond to the seven
clinicians A-G, the next is the count of observations, and the remaining columns are fitted values
according to different models discussed by Agresti.

Object carcinoma is a likelihood function (of class lsl) on the Bradley-Terry strengths of the seven
clinicians. The clinicians diagnosed the presence or absence of carcinoma on a total of 118 patients
in a blind rating scheme. The maximum likelihood estimator for the clinicians’ Bradley-Terry
strengths is given as carcinoma_maxp, which is computationally expensive to find. The package
also includes carcinoma_count, which is a different estimator for the Clinicians’ BT strengths.

These objects can be generated by running script inst/carcinoma.Rmd, which includes some fur-
ther discussion and technical documentation, and creates file carcinoma.rda which resides in the
data/ directory.

References

A. Agresti, 2002. "Categorical data analysis". John Wiley and Sons. Table 13.1, p542.

character_to_number 11

See Also

race3,hepatitis

Examples

pie(carcinoma_maxp)

character_to_number Convert a character vector to a numeric vector

Description

Convert string descriptions of competitors into their number

Usage

character_to_number(char, pnames)
char2num(char, pnames)

Arguments

char Character vector to be converted

pnames Names vector (usually pnames(H))

Details

In earlier versions of this package, the internal mechanism of functions such as ggrl(), and all the
C++ code, operated with the competitors labelled with a non-negative integer; it is then natural to
refer to the competitors as p1, p2, etc.

However, sometimes the competitors have names (as in, for example, the rowing dataset). If so, it
is more natural to refer to the competitors using their names rather than an arbitrary integer.

Function character_to_number() converts the names to numbers. If an element of char is not
present in pnames, an error is returned (function char2num() is an easy-to-type synonym). The
function is here because it is used in ggrl().

Author(s)

Robin K. S. Hankin

See Also

rank_likelihood

12 chess

Examples

x <- sample(9)
names(x) <- sample(letters[1:9])
H <- rank_likelihood(x)
character_to_number(letters[1:3],pnames(H))

char2num(c("PB","L"),pnames(icons))

chess Chess playing dataset

Description

A tally of wins and losses for games between three chess players: Topalov, Anand, Karpov.

Usage

data(chess)

Details

(there are three chess datasets in the package, documented at interzonal.Rd [the 1963 World
championship], kka.Rd [Karpov-Kasparov-Anand dataset], and chess.Rd [rock-paper-scissors us-
ing Topalov-Anand-Karpov])

This is a very simple dataset that can be used for illustration of hyper2 idiom.

The players are:

• Grandmaster Veselin Topalov. FIDE world champion 2005-2006; peak rating 2813

• Grandmaster Viswanathan Anand. FIDE world champion 2000-2002, 2008; peak rating 2799

• Grandmaster Anatoly Karpov. FIDE world champion 1993-1999; peak rating 2780

Observe that Topalov beats Anand, Anand beats Karpov, and Karpov beats Topalov (where “beats”
means “wins more games than”).

The games thus resemble a noisy version of “rock paper scissors”.

The likelihood function does not record who played white; see karpov_kasparov_anand for such
a dataset.

These objects can be generated by running script inst/rock_paper_scissors.Rmd, which in-
cludes some further discussion and technical documentation and creates file chess.rda which re-
sides in the data/ directory.

File inst/ternaryplot_hyper2.Rmd gives an example showing the chess likelihood function that
uses Ternary::ternaryPlot().

consistency 13

References

• https://en.chessbase.com/

See Also

karpov_kasparov_anand

Examples

data(chess)
maxp(chess)

mgf(chess,c(Anand=2),tol = 0.1) # tolerance for speed

consistency Consistency check for hyper2 objects

Description

Given a hyper2 object, calculate the maximum likelihood point in two ways and plot one against
the other to check for consistency.

Usage

consistency(H, plot=TRUE, ...)

Arguments

H A hyper2 object

plot If TRUE (default), plot a comparison and return a matrix invisibly, and if FALSE
return the matrix. Modelled on argument plot of hist

... Further arguments, passed to points()

Details

Given a hyper2 object, calculate the maximum likelihood estimate of the players’ strengths using
maxp(); then reverse the pnames attribute and calculate the players’ strengths again. These two
estimates should be identical but small differences highlight numerical problems. Typically, the
differences are small if there are fewer than about 25 players.

Reversing the pnames() is cosmetic in theory but is a non-trivial operation: for example, it changes
the identity of the fillup from the last player to the first.

Value

Returns a named three-row matrix with first row being the direct evaluate, second row being the
reverse of the reversed evaluate, and the third being the difference

https://en.chessbase.com/

14 constructor

Author(s)

Robin K. S. Hankin

See Also

ordertrans

Examples

consistency(icons)

x <- icons
y <- icons
pnames(y) <- rev(pnames(y))
gradient(x,indep(equalp(x)))
gradient(y,indep(equalp(y)))

constructor Formula 1 dataset: the constructors’ championship

Description

Race results from 2017 Formula One constructors’ Championship

Usage

data(constructor)

Format

A hyper3 object that gives a likelihood function

Details

The Constructors championship runs parallel to the Formula 1 drivers’ championship. The package
currently includes data from 2020 and 2021; the following text applies to both years. I will add
more years eventually.

Object constructor_2021_table is a dataframe, taken from Wikipedia, with rows corresponding
to performance of a constructor. Each constructor fields two cars in each race; the identity of the
driver is not important in this context (and indeed may change as the season progresses). The first
column is the name of the constructor, the next 22 columns show the ranks of the constructors’ cars,
and the final one is the points awarded. At each venue, the constructor’s best performance is listed
first. The constructors’ names change quite frequently (e.g. “Red Bull Racing-TAG Heuer” raced
2016,2017, and 2018; “Red Bull Racing-Honda” raced 2019, 2020, and 2021. I am not sure whether
to treat these as separate entities or not; file inst/constructor_names.txt gives a dataframe of
team names and years they competed (not currently part of the package). The row names of the
dataframe cannot be the constructors because these are not unique.

counterstrike 15

Object constructor_2021_maxp gives the maximum likelihood estimate for the constructors’ strengths.
The corresponding hyper3 likelihood function constructor_2021 is produced by ordertable2supp3().

These objects can be generated by running script inst/race3.Rmd, which includes some further
discussion and technical documentation, and creates file constructor.rda which resides in the
data/ directory.

References

Wikipedia contributors. (2022, April 14). 2021 Formula One World Championship. In _Wikipedia,
The Free Encyclopedia_. Retrieved 05:16, April 17, 2022, from https://en.wikipedia.org/w/
index.php?title=2021_Formula_One_World_Championship&oldid=1082745216

See Also

formula1

Examples

dotchart(constructor_2021_maxp)

counterstrike Counterstrike

Description

A kill-by-kill analysis of a counterstrike game.

Usage

data(counterstrike)

Details

E-sports are a form of competition using video games. E-sports are becoming increasingly popu-
lar, with high-profile tournaments attracting over 400 million viewers, and prize pools exceeding
US$20m.

Counter Strike: Global Offensive (CS-GO) is a multiplayer first-person shooter game in which two
teams of five compete in an immersive virtual reality combat environment. CS-GO is distinguished
by the ability to download detailed gamefiles in which every aspect of an entire match is recorded,
it being possible to replay the match at will.

Statistical analysis of such gamefiles is extremely difficult, primarily due to complex gameplay
features such as cooperative teamwork, within-team communication, and real-time strategic fluidity.

It is the task of the statistician to make robust inferences from such complex datasets, and here I dis-
cuss data from an influential match between “FaZe Clan” and “Cloud9”, two of the most successful
E-sports syndicates of all time, when they competed at Boston 2018.

https://en.wikipedia.org/w/index.php?title=2021_Formula_One_World_Championship&oldid=1082745216
https://en.wikipedia.org/w/index.php?title=2021_Formula_One_World_Championship&oldid=1082745216

16 cplusplus

Dataset counterstrike is a loglikelihood function for the strengths of ten counterstrike players;
counterstrike_maxp is a precomputed evaluate, and zacslist the observations used to calculate
the loglikelihood function.

The probability model is similar to that of NBA: when a player kills (scores), this is taken to be a
success of the whole team rather than the shooter.

File inst/counterstrike.R and inst/counterstrike_random.R include some further randomi-
sation tests and discussion.

The objects documented here can be generated by running script inst/counterstrike.Rmd, which
includes some further discussion and technical documentation and creates file counterstrike.rda
which resides in the data/ directory.

Counterstrike dataset kindly supplied by Zachary Hankin.

References

• https://www.youtube.com/watch?v=XKWzlG4jDnI

• https://en.wikipedia.org/wiki/FaZe_Clan

• https://en.wikipedia.org/wiki/Cloud9

Examples

dotchart(counterstrike_maxp)

cplusplus Wrappers to c calls

Description

Various low-level wrappers to C functions, courtesy of Rcpp

Usage

overwrite(L1, powers1, L2, powers2)
accessor(L,powers,Lwanted)
assigner(L,p,L2,value)
addL(L1,p1,L2,p2)
identityL(L,p)
evaluate(L, powers, probs, pnames)
differentiate(L, powers, probs, pnames, n)
differentiate_n(L, powers, probs, pnames, n)

https://www.youtube.com/watch?v=XKWzlG4jDnI
https://en.wikipedia.org/wiki/FaZe_Clan
https://en.wikipedia.org/wiki/Cloud9

curling 17

Arguments

L, L1, L2, Lwanted
Lists with character vector elements, used to specify the brackets of the hyper-
dirichlet distribution

p, p1, p2, powers, powers1, powers2
A numeric vector specifying the powers to which the brackets are raised

value RHS in assignment, a numeric vector
probs Vector of probabilities for evaluation of log-likelihood
pnames Character vector of names
n Integer specifying component to differentiate with respect to

Details

These functions are not really intended for the end-user, as out-of-scope calls may cause crashes.

Value

These functions return a named List

Author(s)

Robin K. S. Hankin

curling Curling at the Winter Olympics, 1998-2018

Description

Data for women’s Olympic Curling at the 2002 Winter Olympics.

Usage

data(curling)

Details

There are five datasets loaded by data("curling"):

• curling_table, an order table for Winter Olympics years 1998,2002,2006,2010,2014, and
2018 for 13 countries.

• curling1, a log likelihood function on the assumption that not attending (indicated by NA) is
equivalent to a DNS in Formula 1

• curling2, a log likelihood function on the assumption that not attending is noninformative
• curling1_maxp and curling2_maxp, corresponding evaluates

These objects can be generated by running script inst/curling.Rmd, which includes some further
discussion and technical documentation and creates file curling.rda which resides in the data/
directory.

18 dirichlet

Author(s)

Robin K. S. Hankin

References

• Wikipedia contributors. Curling at the Winter Olympics [Internet]. Wikipedia, The Free
Encyclopedia; 2021 Jan 7, 14:23 UTC [cited 2021 Jan 21]. Available from: https://en.
wikipedia.org/w/index.php?title=Curling_at_the_Winter_Olympics&oldid=998891075

Examples

data(curling)
dotchart(curling1_maxp)

dirichlet Dirichlet distribution and generalizations

Description

The Dirichlet distribution in likelihood (for p) form, including the generalized Dirichlet distribution
due to Connor and Mosimann

Usage

dirichlet(powers, alpha)
dirichlet3(powers, lambda=NULL)
GD(alpha, beta, beta0=0)
GD_wong(alpha, beta)
rdirichlet(n,H)
is.dirichlet(H)
rp_unif(n,H)

Arguments

powers In function dirichlet() a (named) vector of powers

alpha, beta A vector of parameters for the Dirichlet or generalized Dirichlet distribution

beta0 In function GD(), an arbitrary parameter

H Object of class hyper2

lambda Vector of weights in dirichlet3()

n Number of observations

https://en.wikipedia.org/w/index.php?title=Curling_at_the_Winter_Olympics&oldid=998891075
https://en.wikipedia.org/w/index.php?title=Curling_at_the_Winter_Olympics&oldid=998891075

dirichlet 19

Details

These functions are really convenience functions.

Function rdirichlet() returns random samples drawn from a Dirichlet distribution. If second
argument H is a hyper2 object, it is tested [with is.dirichlet()] for being a Dirichlet distribution.
If so, samples from it are returned. If not, (e.g. icons), an error is given. If H is not a hyper2 object,
it is interpreted as a vector of parameters α [not a vector of powers].

Function rp_unif() returns uniformly distributed vectors, effectively using H*0; but note that this
uses Dirichlet sampling which is much faster and better than the Metropolis-Hastings functionality
documented at rp.Rd.

Functions GD() and GD_wong() return a likelihood function corresponding to the Generalized Dirich-
let distribution as presented by Connor and Mosimann, and Wong, respectively. In GD_wong(),
alpha and beta must be named vectors; the names of alpha give the names of x1, . . . , xk and the
last element of beta gives the name of xk+1.

Function dirichlet3() returns a hyper3 object with weights lambda. If lambda is length less than
that of powers, it is padded with 1s [so default NULL corresponds to unit weights, that is, a hyper2
object]. A use-case is given in inst/rock_paper_scissors_monster.Rmd.

Note

A dirichlet distribution can have a term with zero power. But this poses problems for hyper2 objects
as zero power brackets are dropped.

Function dirichlet3() is a replacement for now removed function pair3().

Author(s)

Robin K. S. Hankin

References

• R. J. Connor and J. E. Mosimann 1969. “Concepts of independence for proportions with a
generalization of the Dirichlet distribution”. Journal of the American Statistical Association,
64:194–206

• T.-T. Wong 1998. “Generalized Dirichlet distribution in Bayesian Analysis”. Applied Mathe-
matics and Computation, 97:165–181

See Also

hyper2,rp

Examples

x1 <- dirichlet(c(a=1,b=2,c=3))
x2 <- dirichlet(c(c=3,d=4))

x1+x2

H <- dirichlet(c(a=1,b=2,c=3,d=4))
rdirichlet(10,H)

20 eurodance

colMeans(rdirichlet(1e4,H))

dirichlet3(c(fish=3,chips=2),lambda=1.8)
dirichlet3(c(x=6,y=5,z=2),1:3)

eurodance Eurovision Dance contest dataset

Description

Voting patterns from Eurovision Dance Contest 2008

Usage

data(eurovision)

Format

A hyper2 object that gives a likelihood function.

Details

Object eurodance is a hyper2 object that gives a likelihood function for the skills of the 14 com-
petitor countries in 2008 Eurovision Dance contest. Object eurodance_table gives the original
dataset and eurodance_maxp the evaluate of the competitors’ Plackett-Luce strengths.

The dataset is interesting because, in addition to the regular votes by each nation, there is an Expert
jury vote as well. We may use Plackett-Luce likelihoods to compare the performance of the Expert
jury with the national votes.

These objects can be generated by running script inst/eurodance.Rmd, which includes some fur-
ther discussion and technical documentation and creates file eurodance.rda which resides in the
data/ directory.

References

• Wikipedia contributors, “Eurovision Song Contest 2009—Wikipedia, The Free Encyclope-
dia”, 2018, https://en.wikipedia.org/w/index.php?title=Eurovision_Song_Contest_
2009&oldid=838723921 [Online; accessed 13-May-2018].

• P. M. E. Altham, personal communication

See Also

eurodance

https://en.wikipedia.org/w/index.php?title=Eurovision_Song_Contest_2009&oldid=838723921
https://en.wikipedia.org/w/index.php?title=Eurovision_Song_Contest_2009&oldid=838723921

eurovision 21

Examples

data(eurodance)
dotchart(eurodance_maxp)

eurovision Eurovision Song contest dataset

Description

Voting patterns from Eurovision 2009

Usage

data(eurovision)

Format

A hyper2 object that gives a likelihood function.

Details

Object eurovision is a hyper2 object that gives a likelihood function for the skills of the 18 com-
petitor countries in semi-final 1 of the 2009 Eurovision Song contest. Object eurovision_table
gives the original dataset and eurovision_maxp the evaluate of the competitors’ Plackett-Luce
strengths.

The motivation for choosing this particular dataset is that Pat Altham (Statistical Laboratory, Cam-
bridge) considered it with a view to discover similarities between voters. In the current analysis, the
likelihood function eurovision assumes their independence.

These objects can be generated by running script inst/eurovision.Rmd, which includes some
further discussion and technical documentation and creates file eurovision.rda which resides in
the data/ directory.

References

• Wikipedia contributors, “Eurovision Song Contest 2009—Wikipedia, The Free Encyclope-
dia”, 2018, https://en.wikipedia.org/w/index.php?title=Eurovision_Song_Contest_
2009&oldid=838723921 [Online; accessed 13-May-2018].

• P. M. E. Altham, personal communication

See Also

eurodance

https://en.wikipedia.org/w/index.php?title=Eurovision_Song_Contest_2009&oldid=838723921
https://en.wikipedia.org/w/index.php?title=Eurovision_Song_Contest_2009&oldid=838723921

22 Extract

Examples

data(eurovision)
dotchart(eurovision_maxp)

Extract Extract or replace parts of a hyper2 object

Description

Extract or replace parts of a hyper2 object

Usage

S3 method for class 'hyper2'
x[...]
S3 replacement method for class 'hyper2'
x[index, ...] <- value
assign_lowlevel(x,index,value)
overwrite_lowlevel(x,value)

Arguments

x An object of class hyper2
... Further arguments, currently ignored
index A list with integer vector elements corresponding to the brackets whose power

is to be replaced
value Numeric vector of powers

Details

These methods should work as expected, although the off-by-one issue might be a gotcha.

For the extract method, H[L], a hyper2 object is returned. The replace method, H[L] <- value, the
index specifies the brackets whose powers are to be overwritten; standard disordR protocol is used.

If the index argument is missing, viz H1[] <- H2, this is a special case. Argument H1 must be
a hyper2 object, and the idiom effectively executes H1[brackets(H2)] <- powers(H2), but more
efficiently (note that this operation is well-defined even though the order of the brackets is arbitrary).
This special case is included in the package because it has a very natural C++ expression [function
overwrite() in the src/ directory] that was too neat to omit.

Altering (incrementing or decrementing) the power of a single bracket is possible using idiom like
H[x] <- H[x] + 1; this is documented at Ops.hyper2, specifically hyper2_sum_numeric() and a
discussion is given at increment.Rd.

Functions assign_lowlevel() and overwrite_lowlevel() are low-level helper functions and
not really intended for the end-user.

Extract 23

Value

The extractor method returns a hyper2 object, restricted to the elements specified

Note

Use powers() and brackets() to extract a numeric vector of powers or a list of integer vectors
respectively.

Replacement idiom H[x] <- val cannot use non-trivial recycling. This is because the elements of
H are stored in an arbitrary order, but the elements of val are stored in a particular order. Also see
function hyper2_sum_numeric().

Author(s)

Robin K. S. Hankin

See Also

hyper2,Ops.hyper2

Examples

data(chess)

chess["Topalov"]
chess[c("Topalov","Anand")]
chess[c("Anand","Topalov")]

Topalov plays Anand and wins:

chess["Topalov"] <- chess["Topalov"]+1
chess[c("Topalov","Anand")] <- chess[c("Topalov","Anand")]-1

Topalov plays *Kasparov* and wins:
chess["Topalov"] <- chess["Topalov"] + 1
chess[c("Topalov","Kasparov")] <- chess[c("Topalov","Kasparov")] -1

magrittr idiom:
chess["Topalov"] %<>% inc
chess[c("Topalov","Kasparov")] %<>% dec

overwriting idiom:
H <- hyper2(list("Topalov","X"),6)
chess[] <- H

H <- icons

24 fillup

fillup Fillup function

Description

Function fillup() concatenates a vector with a ‘fillup’ value to ensure a unit sum; if given a matrix,
attaches a column so the rowsums are 1.

Function indep() is the inverse: it removes the final element of a vector, leaving only an indepen-
dent set.

Usage

fillup(x,H=NULL,total=1)
indep(x)

Arguments

x Numeric vector

H Object with pnames() attribute, typically of class hyper2 or hyper3, used for
names if supplied

total Total value for probability

Details

Usually you want the total to be one, to enforce the unit sum constraint. Passing total=0 constrains
the sum to be zero. This is useful when considering δp; see the example at gradient.Rd.

Author(s)

Robin K. S. Hankin

See Also

equalp,gradient

Examples

fillup(c(1/2,1/3))

indep(c(1/2,1/3,1/6))

fillup(indep(icons_maxp))
fillup(indep(icons_maxp),icons)

formula1 25

formula1 Formula 1 dataset

Description

Race results from 2017 Formula One World Championship

Usage

data(formula1)
formula1_points_systems(top=11)

Arguments

top Number of drivers to retain in formula1_points_systems()

Format

A hyper2 object that gives a likelihood function

Details

Object formula1 is a hyper2 object that gives a likelihood function for the strengths of the com-
petitors of the 2017 Formula One (Drivers’) World Championship. Object F1_table_2017 is an
order table: a data frame with rows being drivers, columns being venues, and entries being places.
Thus looking at the first row, first column we see that Hamilton placed second in Austria.

The package uses files like inst/formula1_2017.txt as primary sources. These are generally
copied from wikipedia, converted into tab-separated clean seven bit ascii, and tidied up a little. I
have removed diacritics from names, so we see “Raikkonen”, “Perez”, etc. Also where distinct
drivers with the same surname compete, I have indicated this, e.g. schumacher_R is Ralf Schu-
macher, schumacher_M is Michael, and schumacher_Mick is Mick; the underscore device means
that quoting should not be needed in R idiom. I have not been entirely consistent here, with Bruno
Senna appearing as “Senna_B” and Nelson Piquet Junior appearing as “PiquetJ” [on the grounds
that in these cases the fathers, being more eminent, should be the primary eponym] although this
might change in the future.

Object F1_table_2017 is simply the first 20 columns of read.table(inst/formula1_2017.txt)
and object F1_points_2017 is column 21. The likelihood function formula1 is ordertable2supp(F1_table_2017).
The datasets in the package are derived from text files in the inst/ directory (e.g. formula1_2017.txt)
by script file inst/f1points_Omaker.R. Executing this script creates files like formula1_results_2017.rda.

The text files can be converted directly into ranktable objects and support functions as follows:

a <- read.table("formula1_2022.txt",header=TRUE)
a <- a[,seq_len(ncol(a)-1)] # strips out the points column
wikitable_to_ranktable(a)
ordertable2supp(a)

26 ggol

Function formula1_points_system() gives various possible points systems for the winner, sec-
ond, third, etc, placing drivers.

The constructors’ championship is discussed at constructor.Rd.

There is a large amount of documentation in the inst/ directory in the form of Rmd files.

References

“Wikipedia contributors”, 2017 Formula One World Championship—Wikipedia, The Free Ency-
clopedia, 2018. https://en.wikipedia.org/w/index.php?title=2017_Formula_One_World_
Championship&oldid=839923210 [Online; accessed 14-May-2018]

See Also

ordertable2supp,constructor

Examples

summary(formula1)
Not run: #Takes too long
dotchart(maxp(formula1))

End(Not run)

ggol Order statistics

Description

Various functions for calculating the likelihood function for order statistics

Usage

ggrl(H, ...)
general_grouped_rank_likelihood(H, ...)
goodbad(winners,losers)
elimination(all_players)
rank_likelihood(M,times=1)
rankvec_likelihood(v,nonfinishers)
race(v,nonfinishers)

Arguments

H Object of class hyper2

... Numeric or character vectors specifying groups of players with equal rank, with
higher-ranking groups coming earlier in the argument list

https://en.wikipedia.org/w/index.php?title=2017_Formula_One_World_Championship&oldid=839923210
https://en.wikipedia.org/w/index.php?title=2017_Formula_One_World_Championship&oldid=839923210

ggol 27

all_players, winners, losers
Numeric or character vectors specifying competitors. See details

M In function rank_likelihood(), a matrix with each row corresponding to a
race (or judge). The columns correspond to the finishing order; thus a=M[i,j]
means that competitor a finished in place j in race i

times Vector specifying the number of times each row is observed

v A character vector specifying ranks. Thus c("b","c","a") means that b came
first, c second, and a third

nonfinishers A character vector with entries corresponding to competitors who did not finish.
Thus race(c("a","b"),c("p","q")) means that the field is a,b,c,d; a came
first, b came second and c and d did not finish

Details

These functions are designed to return likelihood functions, in the form of lists of hyper2() objects,
for typical order statistics such as the results of rowing heats or MasterChef tournaments.

Function ggrl() is an easily-typed alias for general_grouped_rank_likelihood().

Function goodbad() is a convenience function for ggrl() in which a bunch of contestants is judged.
It returns a likelihood function for the observation that the members of one subset were better than
those of another. Thus goodbad(letters[1:3],letters[4:5]) corresponds to the observation
that d and e were put into an elimination trial (and abc were not).

Function elimination() gives a likelihood function for situations where the weakest player is
identified at each stage and subsequently eliminated from the competition. It is intended for sit-
uations like the Great British Bake-off and Masterchef in which the observation is which player
was chosen to leave the show. In this function, argument all_players is sensitive to order, unlike
choose_winners() and choose_losers() (an integer n is interpreted as letters[seq_len(n)]).
Element i of all_players is the ith player to be eliminated. Thus the first element of all_players
is the first player to be eliminated (and would be expected to have the lowest strength). The final
element of all_players is the last player to be eliminated (or alternatively the only player not to
be eliminated).

Function rank_likelihood() takes a matrix M with rows corresponding to a judge (or race); col-
umn names are interpreted as competitor names. A named vector is coerced to a one-row matrix.
Each row of M is an order statistic: thus c(3,4,2,1) means that person 3 came first, person 4 came
second, person 2 came third and person 1 came last. Note that in data frames like F1_table_2017,
each column is a race.

Function rankvec_likelihood() takes a character vector of competitors with the order of ele-
ments corresponding to the finishing order; a Plackett-Luce likelihood function is returned. Thus
v=c("d","b","c","a") corresponds to d coming first, b second, c third, and a fourth. Function
race() is an arguably more memorable synonym.

An example of race() is given in inst/rowing.Rmd, and examples of ggrl() are given in inst/loser.Rmd
and inst/masterchef.Rmd.

Author(s)

Robin K. S. Hankin

28 gradient

See Also

rrank,ordertable2supp,race3

Examples

W <- hyper2(pnames=letters[1:5])
W1 <- ggrl(W, 'a', letters[2:4],'e') # 6-element list
W2 <- ggrl(W, 'b', letters[3:5],'a') # 6-element list

like_single_list(equalp(W1),W1)
like_series(equalp(W1),list(W1,W2))

if(FALSE){ # takes too long
run 10 races:
r1 <- rrank(10,p=(7:1)/28)
colnames(r1) <- letters[1:7]

Likelihood function for r1:
rank_likelihood(r1)
rank_likelihood(r1,nonfinishers=letters[8:9])

convert a rank table to a support function:
rank_likelihood(wikitable_to_ranktable(volvo_table))

H <- hyper2()
for(i in 1:20){

H <- H + race(sample(letters[1:5],sample(3,1),replace=FALSE))
}
equalp.test(H) # should not be significant (null is true)

H1 <- hyper2(pnames=letters[1:5])
H2 <- choose_losers(H1,letters[1:4],letters[1:2]) # {a,b} vs {c,d}; {a,b} lost
maxplist(H2,control=list(maxit=1)) # control set to save time
}

gradient Differential calculus

Description

Given a hyper2 object and a point in probability space, function gradient() returns the gradient
of the log-likelihood; function hessian() returns the bordered Hessian matrix. By default, both
functions are evaluated at the maximum likelihood estimate for p, as given by maxp().

Usage

gradient(H, probs=indep(maxp(H)))
hessian(H,probs=indep(maxp(H)),border=TRUE)

gradient 29

hessian_lowlevel(L, powers, probs, pnames,n)
is_ok_hessian(M, give=TRUE)

Arguments

H A hyper2 object

L, powers, n Components of a hyper2 object

probs A vector of probabilities

pnames Character vector of names

border Boolean, with default TRUE meaning to return the bordered Hessian and FALSE
meaning to return the Hessian (warning: this option does not respect the unit
sum constraint)

M A bordered Hessian matrix, understood to have a single constraint (the unit sum)
at the last row and column; the output of hessian(border=TRUE)

give Boolean with default FALSE meaning for function is_ok_hessian() to return
whether or not M corresponds to a negative-definite matrix, and TRUE meaning to
return more details

Details

Function gradient() returns the gradient of the log-likelihood function. If the hyper2 object is of
size n, then argument probs may be a vector of length n−1 or n; in the former case it is interpreted
as indep(p). In both cases, the returned gradient is a vector of length n − 1. The function returns
the derivative of the loglikelihood with respect to the n−1 independent components of (p1, . . . , pn),
namely (p1, . . . , pn−1). The fillup value pn is calculated as 1− (p1 + · · ·+ pn−1).

Function gradientn() returns the gradient of the loglikelihood function but ignores the unit sum
constraint. If the hyper2 object is of size n, then argument probs must be a vector of length n,
and the function returns a named vector of length n. The last element of the vector is not treated
differently from the others; all n elements are treated as independent. The sum need not equal one.

Function hessian() returns the bordered Hessian, a matrix of size n+ 1× n+ 1, which is useful
when using Lagrange’s method of undetermined multipliers. The first row and column correspond
to the unit sum constraint,

∑
p1 = 1. Row and column names of the matrix are the pnames() of

the hyper2 object, plus “usc” for “Unit Sum Constraint”.

The unit sum constraint borders could have been added with idiom magic::adiag(0,pad=1,hess),
which might be preferable.

Function is_ok_hessian() returns the result of the second derivative test for the maximum like-
lihood estimate being a local maximum on the constraint hypersurface. This is a generalization of
the usual unconstrained problem, for which the test is the Hessian’s being negative-definite.

Function hessian_lowlevel() is a low-level helper function that calls the C++ routine.

Further examples and discussion is given in file inst/gradient.Rmd. See also the discussion at
maxp on the different optimization routines available.

30 handover

Value

Function gradient() returns a vector of length n − 1 with entries being the gradient of the log-
likelihood with respect to the n−1 independent components of (p1, . . . , pn), namely (p1, . . . , pn−1).
The fillup value pn is calculated as 1− (p1, . . . , pn−1).

If argument border is TRUE, function hessian() returns an n-by-n matrix of second derivatives;
the borders are as returned by gradient(). If border is FALSE, ignore the fillup value and return
an n− 1-by-n− 1 matrix.

Calling hessian() at the evaluate will not return exact zeros for the constraint on the fillup value;
gradient() is used and this does not return exactly zeros at the evaluate.

Author(s)

Robin K. S. Hankin

Examples

data(chess)
p <- c(1/2,1/3)
delta <- rnorm(2)/1e5 # delta needs to be quite small

deltaL <- loglik(p+delta,chess) - loglik(p,chess)
deltaLn <- sum(delta*gradient(chess,p + delta/2)) # numeric

deltaL - deltaLn # should be small [zero to first order]

H <- hessian(icons)
is_ok_hessian(H)

handover Dataset on communication breakdown in handover between physi-
cians

Description

Object handover is a likelihood function corresponding to a dataset arising from 69 medical mal-
practice claims and concerns handover (or hand-off) between physicians. This dataset was analysed
by Lin et al. (2009), and further analysed by Altham and Hankin (2010). The computational
methods are presented in the (unmaintained) hyperdirichlet and aylmer packages and a further
discussion is given in the “integration” vignette of the hyper2 package. The original dataset is
handover_table, a three-by-three matrix of counts.

Usage

data(handover)

head.hyper2 31

Details

These objects can be generated by running script inst/handover.Rmd, which includes some further
discussion and technical documentation, and creates file handover.rda which resides in the data/
directory.

References

• Y. Lin and S. Lipsitz and D. Sinha and A. A. Gawande and S. E. Regenbogen and C. C.
Greenberg, 2009. “Using Bayesian p-values in a 2×2 table of matched pairs with incompletely
classified data”. Journal of the Royal Statistical Society, Series C, 58:2

• P. M. E. Altham and R. K. S. Hankin, 2010. “Using recently developed software on a 2 × 2
table of matched pairs with incompletely classified data”. Journal of the Royal Statistical
Society, series C, 59(2): 377-379

• R. K. S. Hankin 2010. “A generalization of the Dirichlet distribution”. Journal of Statistical
software, 33:11

• L. J. West and R. K. S. Hankin 2008. “Exact tests for two-way contingency tables with struc-
tural zeros”. Journal of Statistical software, 28:11

Examples

data(handover)
maxp(handover)

head.hyper2 First few terms of a distribution

Description

First few terms in a hyperdirichlet distribution

Usage

S3 method for class 'hyper2'
head(x, ...)

Arguments

x Object of class hyper2

... Further arguments, passed to head()

Details

Function is x[head(brackets(x), ...)]

Value

Returns a hyper2 object

32 hepatitis

Author(s)

Robin K. S. Hankin

Examples

p <- zipf(5)
names(p) <- letters[1:5]
H <- rank_likelihood(rrank(20,p))
head(H)

hepatitis Hepatitis dataset discussed by Agresti

Description

A dataset considered by Agresti

Usage

data(hepatitis)

Format

A hyper2 object that gives a likelihood function

Details

Object hepatitis_table is drawn from Agresti, table 12.16, page 533. Object hepatitis is a
likelihood function of class lsl and hepatitis_maxp a pre-calculated evaluate.

These objects can be generated by running script inst/hepatitis.Rmd, which includes some fur-
ther discussion and technical documentation, and creates file hepatitis.rda which resides in the
data/ directory.

References

A. Agresti, 2002. "Categorical data analysis". John Wiley and Sons. Table 13.1, p542.

See Also

race3,hepatitis

Examples

pie(hepatitis_maxp)

hyper2 33

hyper2 Basic functions in the hyper2 package

Description

Basic functions in the hyper2 package

Usage

hyper2(L=list(), d=0, pnames)
S3 method for class 'hyper2'
brackets(H)
S3 method for class 'hyper2'
powers(H)
S3 method for class 'hyper2'
pnames(H)
S3 method for class 'suplist'
pnames(H)
size(H)
as.hyper2(L,d,pnames)
is.hyper2(H)
is_valid_hyper2(L,d,pnames)
is_constant(H)

Arguments

H A hyper2 object

L A list of character vectors whose elements specify the brackets of a hyper2 ob-
ject

d A vector of powers; hyper2() recycles only if d is of length 1

pnames A character vector specifying the names of p1 through pn.

Details

These are the basic functions of the hyper2 package. Function hyper() is the low-level creator
function; as.hyper2() is a bit more user-friendly and attempts to coerce its arguments into a suit-
able form; for example, a matrix is interpreted as rows of brackets.

Functions pnames() and pnames<-() are the accessor and setter methods for the player names.
Length-zero character strings are acceptable player names. The setter method pnames<-() can be
confusing. Idiom such as pnames(H) <- value does not change the likelihood function of H (except
possibly its domain). When called, it changes the pnames internal vector, and will throw an error
if any element of c(brackets(H)) is not present in value. It has two uses: firstly, to add players
who do not appear in the brackets; and secondly to rearrange the pnames vector (the canonical use-
case is pnames(H) <- rev(pnames(H))). If you want to change the player names, use psubs() to
substitute players for other players.

34 hyper3

Function is_valid_hyper2() tests for valid input, returning a Boolean. This function returns an
error if a bracket contains a repeated element, as in hyper2(list(c("a","a")),1).

Note that it is perfectly acceptable to have an element of pnames that is not present in the likelihood
function (this would correspond to having no information about that particular player).

Function size() returns the (nominal) length n of nonnegative vector p = (p1, . . . , pn) where
p1 + · · ·+ pn = 1.

Author(s)

Robin K. S. Hankin

See Also

Ops.hyper2, Extract.hyper2, loglik, hyper2-package psubs

Examples

(o <- hyper2(list("a","b","c",c("a","b"),letters[1:3]),c(1:3,-1,-5)))
(p <- hyper2(list("a",c("a","d")),c(1,-1)))
o+p

Verify that the MLE is invariant under reordering
pnames(icons) <- rev(pnames(icons))
maxp(icons) - icons_maxp # should be small

hyper3 Weighted probability vectors: hyper3 objects

Description

Objects of class hyper3 are a generalization of hyper2 objects that allow the brackets to contain
weighted probabilities.

As a motivating example, suppose two players with Bradley-Terry strengths p1, p2 play chess where
we quantify the first-mover advantage with a term λ. If p1 plays white a+ b times with a wins and
b losses, and plays black c + d times with c wins and d losses, then a sensible likelihood function
might be

(
λp1

λp1 + p2

)a(
p2

λp1 + p2

)b(
p1

p1 + λp2

)c(
λp2

p1 + λp2

)d

If a = 1, b = 2, c = 3, d = 4 and λ = 1.3 appropriate package idiom might be:

hyper3 35

H <- hyper3()
H[c(p1=1.3)] %<>% inc(1) # a=1
H[c(p2=1)] %<>% inc(2) # b=2
H[c(p1=1.3,p2=1)] %<>% dec(3) # a+b=1+2=3
H[c(p1=1)] %<>% inc(3) # c=3
H[c(p2=1.3)] %<>% inc(4) # d=4
H[c(p1=1,p2=1.3)] %<>% dec(7) # c+d=3+4=7
H
> log((p1=1)^3 * (p1=1, p2=1.3)^-7 * (p1=1.3)^1 * (p1=1.3, p2=1)^-3 *
(p2=1)^2 * (p2=1.3)^4)

The general form of terms of a hyper3 object would be (w1p1 + · · ·+ wrpr)
α; the complete object

would be

L (p1, . . . , pn) =

N∏
j=1

(
n∑

i=1

wijpi

)αi

where we understand that pn = 1−
∑n−1

i=1 pi; many of the weights might be zero. We see that the
weights wij may be arranged as a matrix and this form is taken by function hyper3_m().

Usage

hyper3(B = list(), W = list(), powers = 0, pnames)
hyper3_bw(B = list(), W = list(), powers = 0, pnames)
hyper3_nv(L=list(),powers=0,pnames)
hyper3_m(M,p,stripzeros=TRUE)

Arguments

B A list of brackets

W A list of weights

L A list of named vectors

powers Numeric vector of powers

pnames Character vector of player names

M Matrix of weights, column names being player names

p Vector of powers, length equal to ncol(M)

stripzeros Boolean with default TRUE meaning to silently remove all-zero rows of M

Details

• Function hyper3() is the user-friendly creation method, which dispatches to a helper function
depending on its arguments.

• Function hyper3_bw() takes a list of brackets (character vectors) and a list of weights (nu-
meric vectors) and returns a hyper3 object.

• Function hyper3_nv() takes a list of named vectors and returns a hyper3 object.

36 hyper3

• Function hyper3_m() takes a matrix with rows being the brackets (entries are weights) and a
numeric vector of powers.

• Function evaluate3() is a low-level helper function that evaluates a log-likelihood at a point
in probability space. Don’t use this: use the user-friendly loglik() instead, which dispatches
to evaluate3().

• Function maxp3() is a placeholder (it is not yet written). But the intention is that it will
maximize the log-likelihood of a hyper3 object over the Bradley Terry strengths and any
weights given. This might not be possible as envisaged right now; I present some thoughts in
inst/kka.Rmd.

• Function list2nv() converts a list of character vectors into a named vector suitable for use as
argument e of function cheering3(). It is used in inst/global_liveability_ranking.Rmd.

• Function as.namedvectorlist() takes a hyper3 object and returns a disoRdered list of
named vectors corresponding to the brackets and their weights.

• Function setweight() alters the weight of every occurrence of a set of players. It is vec-
torised, so setweight(H,c("a","b"),88:89) sets the weight of a to 88 and b to 89. Re-
placement methods are defined, so “H["a"] <- as.weight(3)” will set the weight of every
occurrence of player a to 3. If H is a hyper2 object, it will be coerced to hyper3.

Value

Generally return or deal with hyper3 objects

Note

Functionality for hyper3 objects is generally indicated by adding a “3” to function names, eg
gradient() goes to gradient3().

Author(s)

Robin K. S. Hankin

See Also

hyper2

Examples

hyper3(B=list("a",c("a","b"),"b"),W=list(1.2,c(1.2,1),1),powers=c(3,4,-7))
hyper3(list(c(a=1.2),c(b=1),c(a=1.2,b=1)),powers=c(3,4,-7))
Above two objects should be identical.

Third method, send a matrix:
M <- matrix(rpois(15,3),5,3)
colnames(M) <- letters[1:3]
hyper3(M,c(2,3,-1,-5,1)) # second argument interpreted as powers

icons 37

Standard way to generate a hyper3 object is to create an empty object
and populate it using the replacement methods:

a <- hyper3() # default creation method [empty object]

a[c(p1=1.3)] <- 5
a[c(p2=1)] <- 2
a[c(p1=1.3,p2=1)] <- -7
a

chess3 # representative simple hyper3 object

H1 <- rankvec_likelihood(letters[sample(6)])
H2 <- rankvec_likelihood(letters[sample(6)])
H1["a"] <- as.weight(1.2) # "a" has some disadvantage in H1
H1[c("b","c")] <- as.weight(2:3) # "b" and "c" have some advantage in H1
H2[c("c","d")] <- as.weight(1.5) # "c" and "d" have some advantage in H2
H1+H2

icons Dataset on climate change due to O’Neill

Description

Object icons_matrix is a matrix of nine rows and six columns, one column for each of six icons
relevant to climate change. The matrix entries show the number of respondents who indicated which
icon they found most concerning. The nine rows show different classes of respondents who were
exposed to different subsets (of size four) of the six icons.

The columns correspond to the different stimulus icons used, detailed below. An extensive discus-
sion is given in West and Hankin 2008, and Hankin 2010; an updated analysis is given in the icons
vignette.

Object icons is the corresponding likelihood function, which can be created with saffy(icons_matrix).

The object is used in inst/ternaryplot_hyper2.Rmd which shows a ternary plot of random sam-
ples.

Usage

data(icons)

Details

The six icons were used in this study were:

PB polar bears, which face extinction through loss of ice floe hunting grounds

NB The Norfolk Broads, which flood due to intense rainfall events

L London flooding, as a result of sea level rise

38 increment

THC The Thermo-haline circulation, which may slow or stop as a result of anthropogenic modifi-
cation of the hydrological cycle

OA Oceanic acidification as a result of anthropogenic emissions of carbon dioxide

WAIS The West Antarctic Ice Sheet, which is calving into the sea as a result of climate change

Author(s)

Robin K. S. Hankin

Source

Data kindly supplied by Saffron O’Neill of the University of East Anglia

References

• S. J. O’Neill and M. Hulme 2009. An iconic approach for representing climate change. Global
Environmental Change, 19:402-410

• I. Lorenzoni and N. Pidgeon 2005. Defining Dangers of Climate Change and Individual Be-
haviour: Closing the Gap. In Avoiding Dangerous Climate Change (conference proceedings),
UK Met Office, Exeter, 1-3 February

• R. K. S. Hankin 2010. “A generalization of the Dirichlet distribution”. Journal of Statistical
software, 33:11

See Also

matrix2supp

Examples

data(icons)
pie(icons_maxp)
equalp.test(icons)

increment Increment and decrement operators

Description

Syntactic sugar for incrementing and decrementing likelihood functions

Usage

inc(H, val = 1)
dec(H, val = 1)
trial(winners,players,val=1)

increment 39

Arguments

H A hyper2 object
winners, players

Numeric or character vectors specifying the winning team and the losing team

val Numeric

Details

A very frequent operation is to increment a single term in a hyper2 object. If

> H <- hyper2(list("b",c("a","b"),"c",c("b","c")),c(2,4,3,5))
> H
a * (a + b)^4 * b^2 * (b + c)^5 * c^3

Suppose we wish to increment the power of a+b. We could do:

H[c("a","b")] <- H[c("a","b")] + 1

(see the discussion of hyper2_sum_numeric at Ops.hyper2.Rd). Alternatively we could use magrittr
pipes:

H[c("a","b")] %<>% `+`(1)

But inc and dec furnish convenient idiom to accomplish the same thing:

H[c("a","b")] %<>% inc

Functions inc and dec default to adding or subtracting 1, but other values can be supplied:

H[c("a","b")] %<>% inc(3)

Or even

H[c("a","b")] %<>% inc(H["a"])

The convenience function trial() takes this one step further and increments the ‘winning team’
and decrements the bracket containing all players. The winners are expected to be players.

> trial(c("a","b"),c("a","b","c"))
> (a + b) * (a + b + c)^-1

Using trial() in this way ensures that the powers sum to zero.

The inc and dec operators and the trial() function are used in inst/kka.Rmd.

Author(s)

Robin K. S. Hankin

40 interzonal

Examples

data(chess)

Now suppose we observe an additional match, in which Topalov beats
Anand. To incorporate this observation into the LF:

trial("a",c("a","b"))

chess <- chess + trial("Topalov",c("Topalov","Anand"))

interzonal 1963 World Chess Championships

Description

Likelihood functions for players’ strengths in the fifth Interzonal tournament which occurred as part
of the 1963 Chess world Championships in Stockholm, 1962.

Details

(there are three chess datasets in the package, documented at interzonal.Rd [the 1963 World
championship], kka.Rd [Karpov-Kasparov-Anand dataset], and chess.Rd [rock-paper-scissors us-
ing Topalov-Anand-Karpov])

The 1963 World Chess Championship was notable for allegations of Soviet collusion. Specifically,
Fischer publicly alleged that certain Soviet players had agreed in advance to draw all their games.
The championship included an “interzonal” tournament in which 23 players competed in Stock-
holm; and a “Candidates” tournament in which 8 players competed in Curacao.

Likelihood functions interzonal and interzonal_collusion are created by files ‘inst/interzonal.Rmd’,
which is heavily documented and include some analysis. Object interzonal includes a term for
drawing, (“draw”), assumed to be the same for all players; object interzonal_collusion includes
in addition to draw, a term for the drawing in Soviet-Soviet matches, “coll”.

Some other analysis is given in files inst/curacao11962_threeplayers.R and inst/curacao1962_threeplayers_rest_monster.Rmd.

See Also

chess,karpov_kasparov_anand

Examples

pie(interzonal_maxp)

samep.test(interzonal,c("Fischer","Geller")) # takes too long

javelin 41

javelin Javelin dataset

Description

Results from the men’s javelin, 2020 Summer Olympics.

• javelin_table, a dataframe in the form of an “attempts table”, detailing the throw distances
of eight competitors (diacritics have been removed) for each of six throws

• javelin1 and javelin2 Support functions corresponding to the weighted Plackett-Luce like-
lihood. The suffix “1” means that no-throws are counted as losing attempts; suffix “2” means
that no-throws are ignored.

• javelin1_maxp and javelin2_maxp are the corresponding maximum likelihood estimates
for the players’ strengths

• javelin_vector is a named vector with elements being the throw distances and names being the
thrower

Usage

data(javelin)

Format

As detailed above

Details

These objects can be generated by running script inst/javelin.Rmd, which includes some further
discussion and technical documentation, and creates file javelin.rda which resides in the data/
directory.

See Also

attemptstable2supp3

Examples

pie(javelin1_maxp)

42 jester

jester Jester dataset

Description

A likelihood function for the Jester datasets

Usage

data(jester)

Details

Object jester is a likelihood function for the 91 jokes rated by the first 150 respondents in file
‘jester_dataset_1_3.zip’, taken from Goldberg et al. Object jester_maxp is the result of run-
ning maxp(jester). The results table of (nearly) all jokes and respondents is given as jester_table
in which each row is a joke and each column a respondent.

The dataset is interesting because it has been analysed by many workers, including Goldberg, for
patterns; here I assume that all the respondents behave identically (but randomly). It is included
here because it is a very severe numerical challenge in the context of the hyper2 package. I am not
convinced that maxjest is even close to the true evaluate.

Objects jester, jester_table, and jester_maxp can be generated by running script ‘inst/jester.Rmd’,
which includes some further technical documentation. This file takes about 10 minutes to run.

References

Eigentaste: A Constant Time Collaborative Filtering Algorithm. Ken Goldberg, Theresa Roeder,
Dhruv Gupta, and Chris Perkins. Information Retrieval, 4(2), 133-151. July 2001.

Examples

maxp(jester) # takes too long

Note that the possibly poor identification of the evaluate
nevertheless allows us to reject the null of equality:

(LAM <- -2*(loglik(equalp(jester),jester)-loglik(jester_maxp,jester)))
pval <- pchisq(LAM,df=size(jester),lower.tail=FALSE)

karate 43

karate Karate dataset

Description

Dataset from the 2018 World Karate Championships, men’s 67kg. It is an example of a dataset with
too many degrees of freedom to be analysed easily by the package.

Usage

data(karate)

Details

Object karate_table is a dataframe of results showing results from the 2018 World Karate Cham-
pionships, men’s 67kg; karate is the associated likelihood function. There are two maximum
likelihood estimates given; karate_maxp, the evaluate as returned by maxp(), and karate_maxp,
returned by zermelo() [the value given by maxp() itself is less likely].

These objects can be generated by running script inst/karate.Rmd, which includes some further
discussion and technical documentation and creates file karate.rda which resides in the data/
directory.

Note

Table karate_table misses uninformative matches, that is, competitions with 0-0 results.

References

https://en.wikipedia.org/wiki/2018_World_Karate_Championships

See Also

zapweak

Examples

summary(karate)

https://en.wikipedia.org/wiki/2018_World_Karate_Championships

44 karpov_kasparov_anand

karpov_kasparov_anand Karpov, Kasparov, Anand

Description

Data of three chess players: Karpov, Kasparov, and Anand. Includes two likelihood functions for
the strengths of the players, and an array of game results

Details

(there are three chess datasets in the package, documented at interzonal.Rd [the 1963 World
championship], kka.Rd [Karpov-Kasparov-Anand dataset], and chess.Rd [rock-paper-scissors us-
ing Topalov-Anand-Karpov])

The strengths of chess players may be assessed using the generalized Bradley-Terry model. The
karpov_kasparov_anand hyper2 likelihood function allows one to estimate the players’ strengths,
propensity to draw, and also the additional strength conferred by playing white as personified by a
draw monster and a white monster draw and white respectively.

Object karpov_kasparov_anand assumes that the draw potential is the same for all three players;
likelihood function kka_3draws allows the propensity to draw to differ between the three players.

The reason that the players are different from those in the chess dataset is that the original data
does not seem to be available any more.

Dataset kka refers to scorelines of matches between three chess players (Kasparov, Karpov, Anand).
It is a named numeric vector with names such as ‘karpov_plays_white_beats_kasparov’ which
has value 18: we have a total of 18 games between Karpov and Kasparov in which Karpov played
white and beat Kasparov.

Object chess3 is a simple hyper3 object corresponding to pairwise comparison with draws; chess3_maxp
is the evaluate, conditional on the estimated white-player advantage and draw proclivity. This ob-
ject is created and discussed in inst/kka.Rmd. Array kka_array presents the same information in
a 3D array.

All data drawn from https://www.chessgames.com (search for “Kasparov vs Karpov”, etc). Note
that the database allows one to sort by white wins or black wins (there is a ‘refine search’ tab at
the bottom). Some searches have more than one page of results. Numbers here downloaded 17
February 2019. Note that only ‘classical games’ are considered here (rapid and exhibition games
being ignored).

These objects can be generated by running script inst/kka.Rmd, which includes some further dis-
cussion and technical documentation and creates file kka.rda which resides in the data/ directory.

See Also

chess

keep 45

Examples

karpov_kasparov_anand
pie(maxp(karpov_kasparov_anand)) # takes ~10s

M <- kka_array[,,1] + 1i*kka_array[,,3]
home_away(M)
home_away3(M,lambda=1.2)

keep Keep or discard players

Description

Flawed functionality to keep or discard subsets of the players in a hyper2 object or order table.

Usage

discard_flawed2(x, unwanted,...)
keep_flawed(H, wanted)
discard_flawed(H, unwanted)

Arguments

H A hyper2 object

x An order table
wanted, unwanted

Players to keep or discard. May be character or integer or logical

... Further arguments passed to wikitable_to_ranktable(), notably points

Details

Do not use these functions. They are here as object lessons in poor thinking. To work with a
subset of competitors, see the example at as.ordertable.

Functions keep_flawed2() and discard_flawed2() take an order table and keep or discard spec-
ified rows, returning a reduced order table. This is not a trivial operation.

Functions keep_flawed() and discard_flawed() will either keep or discard players specified in
the second argument. It is not clear to me that these functions have any reasonable probabilistic
interpretation and file inst/retain.Rmd gives a discussion.

Given a wikitable or ordertable, it is possible to create a likelihood function based on a subset
of rows using the incomplete=TRUE argument; see the example at ?ordertable2supp. But this
method is flawed too because it treats non-finishers as if they finished in the order of their rows.

Function as.ordertable() is the correct way to consider a subset of players in a wikitable.

46 length.hyper2

Author(s)

Robin K. S. Hankin

See Also

ordertable2supp,tidy

Examples

maxp(icons)
discard_flawed(icons,c("OA","WAIS"))

Not run: # (takes too long)
data("skating")
maxp(skating)[1:4] # numbers work, keep the first four skaters
maxp(keep_flawed(skating,pnames(skating)[1:4])) # differs!

End(Not run)

length.hyper2 Length method for hyper2 objects

Description

Length method for hyper2 objects, being the number of different brackets in the expression

Usage

S3 method for class 'hyper2'
length(x)

Arguments

x hyper2 object

Author(s)

Robin K. S. Hankin

Examples

data("oneill")
length(icons)
seq_along(icons)

loglik 47

loglik Log likelihood functions

Description

Returns a log-likelihood for a given hyper2 or hyper3 object at a specific point in probability space

Usage

loglik(p, H, log = TRUE)
loglik_single(p,H,log=TRUE)
like_single_list(p,Lsub)
like_series(p,L,log=TRUE)

Arguments

H An object of class hyper2 or hyper3

p A probability point. See details

log Boolean with default TRUE meaning to return the log-likelihood and FALSE mean-
ing to return the likelihood

L, Lsub A list of hyper2 objects, or a list of list of loglik objects

Details

Function loglik() is a straightforward likelihood function. It can take a vector of length n=size(H)
or size(H)-1. If given the vector p = (p1, . . . , pn−1) it appends the fillup value, and then returns
returns the (log) likelihood (names are discarded in this case). If given a vector p = (p1, . . . , pn)
[notionally summing to 1] it requires a named vector, and names must match those of H. The vector
is reordered if necessary.

If p is a matrix, the rows are interpreted as probability points.

Function loglik_single() is a helper function that takes a single point in probability space. Func-
tions like_single_list() and like_series() are intended for use with ggrl().

Note

Likelihood is defined up to an arbitrary multiplicative constant. Log-likelihood (also known as
support) is defined up to an arbitrary additive constant.

If function loglik() is given a probability vector of length n, the vector must satisfy the unit sum
constraint (up to a small tolerance). Also, it must be a named vector with names (collectively) equal
to the pnames of argument H.

> pnames(chess)
[1] "Topalov" "Anand" "Karpov"
> loglik(c(Topalov=0.7,Anand=0.2,Karpov=0.1),chess)

48 loglik

[1] -69.45364
> loglik(c(Karpov=0.1,Topalov=0.7,Anand=0.2),chess) # identical, just a different order
[1] -69.45364

But if given a vector of length n-1 [e.g. the value of indep()], then the names are ignored and the
entries are interpreted as the BT strengths of pnames(H)[seq_len(n-1)]:

> loglik(c(0.7,0.2),chess)
[1] -69.45364
> loglik(c(foo=0.7,bar=0.2),chess) # names are ignored
[1] -69.45364

(the above applies for H a hyper2 or hyper3 object).

Empty brackets are interpreted consistently: that is, zero whatever the probability vector (although
the print method is not perfect).

Author(s)

Robin K. S. Hankin

See Also

maxp

Examples

data(chess)
loglik(c(1/3,1/3),chess)

loglik(rp(14,icons),icons)

Not run: # takes too long
like_series(masterchef_maxp,masterchef)
like_series(indep(equalp(masterchef)),masterchef)

End(Not run)

W <- hyper2(pnames=letters[1:6])
W1 <- ggrl(W, 'a', letters[2:5],'f') # 24-element list
W2 <- ggrl(W, c('a','b'), c('c','d'),c('e','f')) # 2^3=8 element list

like_single_list(rep(1/6,5),W1) # information from first observation
like_series(rep(1/6,5),list(W1,W2)) # information from both observations

hyper3 objects:
H3 <- ordervec2supp3(letters[c(1,2,3,3,2,1,2)])
loglik(c(a=1,b=2,c=3)/6,H3)
loglik(c(a=1,c=3,b=2)/6,H3) # identical

masterchef 49

masterchef Masterchef series 6

Description

Data from Australian Masterchef Series 6

Usage

data(masterchef)

Format

Object masterchef is a list of hyper2 objects; masterchef_pmax and masterchef_constrained_pmax
are named vectors with unit sum.

Details

The object is created using the code in inst/masterchef.Rmd, which is heavily documented. Not
all the information available is included in the likelihood function as some of the early rounds result
in an unmanageably large list. Inclusion is controlled by Boolean vector doo.

The definitive source is the coloured table on the wiki page.

References

Wikipedia contributors, “MasterChef Australia (series 6),” Wikipedia, The Free Encyclopedia,
https://en.wikipedia.org/w/index.php?title=MasterChef_Australia_(series_6)&oldid=
758432561 (accessed January 5, 2017).

See Also

ggrl

Examples

a1 <- indep(equalp(masterchef[[1]])) # equal strengths
a2 <- indep(masterchef_maxp) # MLE
a3 <- indep(masterchef_constrained_maxp) # constrained MLE

Not run: # takes too long
like_series(a1, masterchef)
like_series(a2, masterchef)
like_series(a3, masterchef)

End(Not run)

https://en.wikipedia.org/w/index.php?title=MasterChef_Australia_(series_6)&oldid=758432561
https://en.wikipedia.org/w/index.php?title=MasterChef_Australia_(series_6)&oldid=758432561

50 matrix2supp

matrix2supp Convert a matrix to a likelihood function

Description

Functions to convert matrix observations to likelihood functions. Each row is an observation of
some kind, and each column a player.

Function ordertable2supp() is documented separately at ordertable2supp.

Usage

saffy(M)
volley(M)

Arguments

M A matrix of observations

Details

Two functions are documented here:

• saffy(), which converts a matrix of restricted choices into a likelihood function; it is named
for Saffron O’Neill. The canonical example would be Saffron’s climate change dataset, docu-
mented at icons. Function saffy() returns the appropriate likelihood function for the dataset.

• volley(), which converts a matrix of winning and losing team members to a likelihood func-
tion. The canonical example is the volleyball dataset. Each row is a volleyball game; each
column is a player. An entry of 0 means “on the losing side”, an entry of 1 means “on the
winning side”, and an entry of NA means “did not play”.

Author(s)

Robin K. S. Hankin

See Also

icons,volleyball

Examples

icons == saffy(icons_table) # should be TRUE

volley(volleyball_table) == volleyball # also should be TRUE

maxp 51

maxp Maximum likelihood estimation

Description

Find the maximum likelihood estimate for p, also equal probabilities

Usage

maxp(H, startp=NULL, give=FALSE, fcm=NULL, fcv=NULL, SMALL=1e-6, n=1,
show=FALSE, justlikes=FALSE, ...)

maxplist(Hlist, startp=NULL, give=FALSE, fcm=NULL, fcv=NULL, SMALL=1e-6, ...)
maxp_single(H, startp=NULL, give=FALSE, fcm=NULL, fcv=NULL, SMALL=1e-6,

maxtry=100, ...)
maxp_single2(H, startp=NULL, give=FALSE, fcm=NULL, fcv=NULL, SMALL=1e-6,

maxtry=100, ...)
maxp_simplex(H, n=100, show=FALSE, give=FALSE, ...)
maxp_lsl(HLSL, startp = NULL, give = FALSE, fcm = NULL, fcv = NULL, SMALL=1e-6, ...)
equalp(H)

Arguments

H A hyper2 or hyper3 object

Hlist A list with elements all hyper2 objects

HLSL An lsl object

startp A vector of probabilities specifying the start-point for optimization; if a full
unit-sum vector, then the fill-up value will be removed by indep() (except for
maxp_lsl())

give Boolean, with default FALSE meaning to return just the evaluate (including fillup),
and TRUE meaning to return the entire formal output of the optimization routine

fcm, fcv Further problem-specific constraints

n Number of start points to use

show Boolean, with TRUE meaning to show successive estimates

justlikes Boolean, with TRUE meaning to return just a vector of estimated likelihoods

SMALL Numerical minimum for probabilities

maxtry Integer specifying maximum number of times to try constrOptim() with slightly
differing start points, to avoid a known R bug which reports wmmin is not
finite, bugzilla id 17703

... Further arguments which maxp() passes to constrOptim()

52 maxp

Details

Function maxp() returns the maximum likelihood estimate for p, which has the unit sum constraint
implemented.

Function maxplist() does the same but takes a list of hyper2 objects (for example, the output
of ggrl()). Note that maxplist() does not have access to the gradient of the objective function,
which makes it slow.

If function maxp() is given a suplist object it dispatches to maxplist().

Functions maxp_single() and maxp_single2() are helper functions which perform a single con-
strained optimization using base::constrOptim() or alabama::constrOptim.nl() respectively.
The functions should produce identical (or at least very similar) results. They are used by maxp()
and maxp_simplex() which dispatch to either maxp_single() or maxp_single2() depending on
the value of option use_alabama. If TRUE, they will use (experimental) maxp_single2(), other-
wise (default) maxp_single(). Function maxp_single() is prone to the “wmmin not finite” bug
[bugzilla id 17703] but on the other hand is a bit slower. I am not sure which one is better at this
time.

Function maxp_simplex() is intended for complicated or flat likelihood functions where finding
local maxima might be a problem. It repeatedly calls maxp_single(), starting from a different
randomly chosen point in the simplex each time. This function does not take fcm or fcv argu-
ments, it operates over the whole simplex (hence the name). Further arguments, ..., are passed to
maxp_single().

The functions do not work for the masterchef_series6 likelihood function. These require a be-
spoke optimization as shown in the vignette.

Function equalp() returns the value of p for which all elements are the same.

In functions maxp() etc, arguments fcm and fcv implement linear constraints to be passed to
constrOptim(). These constraints are in addition to the usual nonnegativity constraints and unit-
sum constraint, and are added to the ui and ci arguments of constrOptim() with rbind() and
c() respectively. The operative lines are in maxp_single():

UI <- rbind(diag(nrow = n - 1), -1, fcm)
CI <- c(rep(SMALL, n - 1), -1 + SMALL, fcv)

where in UI, the first n− 1 rows enforce nonnegativity of pi, 1 ≤ p < n; row n enforces nonnega-
tivity of the fillup value pn; and the remaining (optional) rows enforce additional linear constraints.
Argument CI is a vector with corresponding elements.

Examples of their use are given in the “icons” vignette.

Note

In manpages elsewhere, n=2 is sometimes used. Previous advice was to use n=10 or greater in
production work, but I now think this is overly cautious and n=1 is perfectly adequate unless the
dimension of the problem is large.

The (bordered) Hessian is given by function hessian(), documented at gradient.Rd; use this to
assess the “sharpness” of the maximum.

moto 53

Function maxp() takes hyper2 or hyper3 objects but it does not currently work with lsl objects;
use maxp_lsl().

The built-in datasets generally include a pre-calculated result of running maxp(); thus hyper2 object
icons and icons_maxp are included in the same .rda file.

Function maxp() can trigger a known R bug (bugzilla id 17703) which reports “wmmin is not
finite”. Setting option use_alabama to TRUE makes the package use a different optimization
routine.

Author(s)

Robin K. S. Hankin

See Also

gradient,fillup

Examples

maxp(icons)

W <- hyper2(pnames=letters[1:5])
W1 <- ggrl(W, 'a', letters[2:3],'d') # W1 is a suplist object
Not run: maxp(W1) # takes a long time to maximize a suplist

moto MotoGP dataset

Description

Race results from the 2019 Grand Prix motorcycling season

Usage

data(moto)

Details

Object moto_table is a dataframe of results showing ranks of 28 drivers (riders?) in the 2019
FIM MotoGP World Championship. The format is standard, that is, can be interpreted by function
ordertable2supp() if the final points column is removed. The corresponding support function is
motoGP_2019.

These objects can be generated by running script inst/moto.Rmd, which includes some further
discussion and technical documentation and creates file moto.rda which resides in the data/ di-
rectory.

54 mult_grid

Note

Many drivers have names with diacritics, which have been removed from the dataframe.

References

Wikipedia contributors. (2020, February 8). 2019 MotoGP season. In Wikipedia, The Free Ency-
clopedia. Retrieved 08:16, February 20, 2020, from https://en.wikipedia.org/w/index.php?
title=2019_MotoGP_season&oldid=939711064

See Also

ordertable2supp

Examples

pie(moto_maxp)

mult_grid Kronecker matrix product functionality

Description

Peculiar version of expand.grid() for matrices

Usage

mult_grid(L)
pair_grid(a,b)

Arguments

L List of matrices

a, b Matrices

Details

Function pair_grid(a,b) returns a matrix with each column of a cbind()-ed to each column of
b.

Function mult_grid() takes a list of matrices; it is designed for use by ggrl().

Author(s)

Robin K. S. Hankin

See Also

ggrl

https://en.wikipedia.org/w/index.php?title=2019_MotoGP_season&oldid=939711064
https://en.wikipedia.org/w/index.php?title=2019_MotoGP_season&oldid=939711064

NBA 55

Examples

pair_grid(diag(2),diag(3))
mult_grid(lapply(1:4,diag))

NBA Basketball dataset

Description

A point-by-point analysis of a basketball game

Usage

data(NBA)

Details

Dataset NBA_table is a dataframe contains a point-by-point analysis of a basketball match. Each
row corresponds to a point scored. The first column is the time of the score, the second is the
number of points scored, the third shows which team had possession at the start of play, and the
fourth shows which team scored. The other columns show the players. Table entries show whether
or not that particular player was on the pitch when the point was scored.

Likelihood function NBA is a hyper2 object that gives the log-likelihood function for this dataset.
There is a player named “possession” that is a reified entity representing the effect of possession.

Object NBA_maxp is not the result of running maxp(NBA); it was obtained by repeatedly running
maxp_simplex() on a fault-tolerant system [it triggers a known R bug, bugzilla id 17703, giving
a “wmmin not finite” error]. It is not clear to me that likelihood function NBA has a well-defined
global maximum.

Object NBA poses difficulty for the numerical optimization routines for some reason.

Note that function volley() is not applicable because we need to include possession.

These objects can be generated by running script inst/NBA.Rmd, which includes some further dis-
cussion and technical documentation and creates file NBA.rda which resides in the data/ directory.

References

https://www.espn.com/nba/playbyplay?gameId=400954514

See Also

volleyball

Examples

data(NBA)
dotchart(NBA_maxp)

https://www.espn.com/nba/playbyplay?gameId=400954514

56 Ops.hyper2

Ops.hyper2 Arithmetic Ops Group Methods for hyper2 objects

Description

Allows arithmetic operators “+”, “*” and comparison operators “==” and “!=”, to be used for hyper2
objects.

Specifically, H1 + H2 implements addition of two log-likelihood functions, corresponding to incor-
poration of additional independent observational data; and n*H1 implements H1+H1+...+H1, corre-
sponding to repeated independent observations of the same data.

There are no unary operations for this class.

Usage

S3 method for class 'hyper2'
Ops(e1, e2 = NULL)
S3 method for class 'hyper2'
sum(x,...,na.rm=FALSE)
hyper2_add(e1,e2)
hyper2_sum_numeric(H,r)

Arguments

e1, e2 Objects of class hyper2, here interpreted as hyperdirichlet distributions
x, ..., na.rm In the sum() method, objects to be summed; na.rm is currently ignored
H, r In function hyper2_sum_numeric(), object H is a hyper2 object and r is a

length-one real vector (a number)

Details

If two independent datasets have hyper2 objects H1 and H2, then package idiom for combining these
would be H1+H2; the additive notation “+” corresponds to addition of the support (or multiplication
of the likelihood). So hyper2 objects are better thought of as support functions than likelihood
functions; this is reflected in the print method which explicitly wraps the likelihood function in a
“log()”.

Idiom H1-H1 returns H1 + (-1)*H2, useful for investigating the difference between likelihood func-
tions arising from two different observations, or different probability models. An example is given
in inst/soling.Rmd.

Testing for equality is not straightforward for two implementation reasons. Firstly, the object itself
is stored internally as a stl map, which does not store keys in any particular order; and secondly,
the stl set class is used for the brackets. A set does not include information about the order of its
elements; neither does it admit repeated elements. See examples.

Function hyper2_sum_numeric() is defined so that idiom like icons["L"] + 5 works as expected.
This means that icons["L"] <- icons["L"] + 3 and icons["L"] %<>%inc(3) work (without this,
one has to type icons["L"] <- powers(icons["L"]) + 3, which sucks).

Raising a hyper2 object to a power returns an error.

Ops.hyper3 57

Value

Returns a hyper2 object or a Boolean.

Author(s)

Robin K. S. Hankin

Examples

chess2 <- hyper2(list("Kasparov","Karpov",c("Kasparov","Karpov")),c(2,3,-5))

chess + chess2

maxp(chess+chess2)

Ops.hyper3 Arithmetic Ops Group Methods for hyper3 objects

Description

Allows arithmetic operators “+”, “*” and comparison operators “==” and “!=”, to be used for
hyper3 objects.

Specifically, H1 + H2 implements addition of two log-likelihood functions, corresponding to incor-
poration of additional independent observational data; and n*H1 implements H1+H1+...+H1, corre-
sponding to repeated independent observations of the same data.

Usage

S3 method for class 'hyper3'
Ops(e1, e2 = NULL)
hyper3_add(e1,e2)
hyper3_prod(e1,n)

Arguments

e1, e2 Objects of class hyper3

n Numeric vector of length 1

Details

Pretty much everything documented here is a straightforward translation of the corresponding
hyper2 functionality.

Value

Returns a hyper3 object or a Boolean.

58 ordertable

Author(s)

Robin K. S. Hankin

Examples

H1 <- hyper3(list(c(a=1.2),c(b=1),c(a=1.2,b=1)),powers=c(3,4,-7))
H2 <- hyper3(list(c(a=1.2),c(b=1.2),c(a=2.2,b=1.2)),powers=c(2,3,-5))

H1
H2

ordertable Order tables

Description

Order tables

Details

The package makes extensive use of order tables and these are discussed here together with a list of
order tables available in the package as data. See also ranktable.Rd.

Consider pentathlon_table:

> pentathlon_table
shooting fencing swimming riding running

Moiseev 5 1 1 6 5
Zadneprovskis 6 2 5 5 1
Capalini 4 6 2 3 4
Cerkovskis 3 3 7 7 2
Meliakh 1 7 4 1 6
Michalik 2 4 6 2 7
Walther 7 5 3 4 3

Although pentathlon_table is a dataset in the package, the source dataset is also included in the
inst/ directory as file pentathlon.txt; use idiom like read.table("inst/pentathlon.txt")
to load the order table.

Object pentathlon_table is a representative example of an ordertable. Each row is a competitor,
each column an event (venue, judge, . . .). The first row shows Moiseev’s ranking in shooting (5th),
fencing (1st), and so on. The first column shows the ranks of the competitors in shooting. Thus
Moiseev came fifth, Zadneprovskis came 6th, and so on.

However, to create a likelihood function we need ranks, not orders. We need to know, for a given
event, who came first, who came second, and so on (an extended discussion on the difference
between rank and order is given at rrank). We can convert from an order table to a rank table using
ordertable_to_ranktable() (see also ranktable.Rd):

ordertable 59

> ordertable_to_ranktable(pentathlon_table)
c1 c2 c3 c4 c5

shooting Meliakh Michalik Cerkovskis Capalini Moiseev
fencing Moiseev Zadneprovskis Cerkovskis Michalik Walther
swimming Moiseev Capalini Walther Meliakh Zadneprovskis
riding Meliakh Michalik Capalini Walther Zadneprovskis
running Zadneprovskis Cerkovskis Walther Capalini Moiseev

c6 c7
shooting Zadneprovskis Walther
fencing Capalini Meliakh
swimming Michalik Cerkovskis
riding Moiseev Cerkovskis
running Meliakh Michalik

Above, we see the same data in a different format (an extended discussion on the difference between
rank and order is given in rrank).

Many of the order tables in the package include entries that correspond to some variation on “did
not finish”. Consider the volvo dataset:

> volvo_table_2014
leg1 leg2 leg3 leg4 leg5 leg6 leg7 leg8 leg9

AbuDhabi 1 3 2 2 1 2 5 3 5
Brunel 3 1 5 5 4 3 1 5 2
Dongfeng 2 2 1 3 DNF 1 4 7 4
MAPFRE 7 4 4 1 2 4 2 4 3
Alvimedica 5 5 3 4 3 5 3 6 1
SCA 6 6 6 6 5 6 6 1 7
Vestas 4 DNF DNS DNS DNS DNS DNS 2 6

In the above order table, we have DNF for “did not finish” and DNS for “did not start”. The formula1
order table has other similar entries such as DSQ for “disqualified” and a discussion is given at
ordertable2supp.Rd.

Links are given below to all the order tables in the package. Note that the table in inst/eurovision.Rmd
(wiki_matrix) is not an order table because no country is allowed to vote for itself.

To coerce a table like the Volvo dataset shown above into an order table [that is, replace DNS with
zeros, and also force nonzero entries to be contiguous], use as.ordertable().

Author(s)

Robin K. S Hankin

See Also

ordertable2supp,rrank, ranktable,as.ordertable

60 ordertable2points

Examples

ordertable_to_ranktable(soling_table)
ordertable2supp(soling_table) == soling # should be TRUE

ordertable2points Calculate points from an order table

Description

Given an order table and a schedule of points, calculate the points awarded to each competitor.

Usage

ordertable2points(o, points,totals=TRUE)

Arguments

o Order table

points A numeric vector indicating number of points awarded for first, second, third,
etc placing

totals Boolean, with default TRUE meaning to return the points for each player (row)
and FALSE meaning to return the entire table but with orders replaced with points
scored

Value

Returns either an order table or a named numeric vector

Author(s)

Robin K. S. Hankin

See Also

ordertable

Examples

points <- c(25, 18, 15, 12, 10, 8, 6, 4, 2, 1, 0, 0)
o <- as.ordertable(F1_table_2017)
ordertable2points(o,points)

ordertable2points(ranktable_to_ordertable(rrank(9,volvo_maxp)),1)

ordertable2supp 61

ordertable2supp Translate order tables to support functions

Description

Wikipedia gives a nice summary in table form of Formula 1 racing results on pages like https://
en.wikipedia.org/wiki/2017_Formula_One_World_Championship (at World Drivers’ Cham-
pionship standings) but the data format is commonly used for many sports [see ordertable.Rd]
and function ordertable2supp() translates such tables into a hyper2 support function and also a
order table.

Both functions interpret zero to mean “Did not finish” (wikipedia usually signifies DNF as a blank).

Usage

ordertable2supp(x, noscore, incomplete=TRUE)
ordervec2supp(d)

Arguments

x Data frame, see details

d A named numeric vector giving order; zero entries are interpreted as that com-
petitor coming last (due to, e.g., not finishing)

incomplete Boolean, with FALSE meaning to insist that each rank 1, 2, ..., n is present [zero
entries mean “did not place” irregardless]. The default TRUE allows for gaps.
This is useful if we are considering the first few lines of an ordertable because
there might be missing ranks.

noscore Character vector giving the abbreviations for a non-finishing status such as “did
not finish” or “disqualified”. A missing argument is interpreted as c("Ret",
"WD", "DNS", "DSQ", "DNP", "NC")

Details

Function ordertable2supp() is intended for use on order tables such as found at https://en.
wikipedia.org/wiki/2019_Moto3_season. This is a common format, used for Formula 1, mo-
toGP, and other racing sports. Prepared text versions are available in the package in the inst/
directory, for example inst/motoGP_2019.txt. Use read.table() to create a data frame which
can be interpreted by ordertable2supp().

Function ordervec2supp() takes an order vector d and returns the corresponding Plackett-Luce
loglikelihood function as a hyper2 object. It requires a named vector; names of the elements are
interpreted as names of the players. Use argument pnames to supply the players’ names (see the
examples).

> x <- c(b=2,c=3,a=1,d=4,e=5) # a: 1st, b: 2nd, c: 3rd etc
> ordervec2supp(x)
log(a * (a + b + c + d + e)^-1 * (a + b + d + e)^-1 * b * (b + d +
e)^-1 * c * (d + e)^-1 * e)

https://en.wikipedia.org/wiki/2017_Formula_One_World_Championship
https://en.wikipedia.org/wiki/2017_Formula_One_World_Championship
https://en.wikipedia.org/wiki/2019_Moto3_season
https://en.wikipedia.org/wiki/2019_Moto3_season

62 ordertable2supp

a

a+ b+ c+ d+ e
· b

b+ c+ d+ e
· c

c+ d+ e
· d

d+ e
· e
e

Zero entries mean “did not finish”:

> ordervec2supp(c(b=1,a=0,c=2)) # b: 1st, a: DNF, c: second
log((a + b + c)^-1 * (a + c)^-1 * b * c)

b

a+ b+ c
· c

a+ c

Note carefully the difference between ordervec2supp() and rankvec_likelihood(), which takes
a character vector:

> names(sort(x))
[1] "a" "b" "c" "d" "e"
> rankvec_likelihood(names(sort(x)))
log(a * (a + b + c + d + e)^-1 * b * (b + c + d + e)^-1 * c * (c + d +
e)^-1 * d * (d + e)^-1)
> rankvec_likelihood(names(sort(x))) == ordervec2supp(x)
[1] TRUE
>

Function order_obs() was used in the integer-indexed paradigm but is obsolete in the name
paradigm. A short vignette applying ordervec2supp() and ordertable2supp() to the salad
dataset of the prefmod package [and further analysed in the PlackettLuce package] is presented at
inst/salad.Rmd.

Value

Returns a hyper2 object

Author(s)

Robin K. S. Hankin

See Also

ordertable,ordertable2supp3

Examples

ordertable2supp(soling_table)

competitors a-f, racing at two venues:
x <- data.frame(

venue1=c(1:5,"Ret"),venue2=c("Ret",4,"Ret",1,3,2),
row.names=letters[1:6])

https://CRAN.R-project.org/package=prefmod
https://CRAN.R-project.org/package=PlackettLuce

ordertrans 63

First consider all competitors; incomplete=FALSE checks that all
finishing competitors have ranks 1-n in some order for some n:

ordertable2supp(x,incomplete=FALSE)

Now consider just a-d; must use default incomplete=TRUE as at venue2
the second and third ranked competitors are not present in x[1:4,]:

ordertable2supp(x[1:4,])

Function ordervec2supp() is lower-level, used for order vectors:

a1 <- c(a=2,b=3,c=1,d=5,e=4) # a: 2nd, b: 3rd, c: 1st, d: 5th, e: 4th
a2 <- c(a=1,b=0,c=0,d=2,e=3) # a: 2nd, b: DNF, c: DNF, d: 2nd, e: 3rd
a3 <- c(a=1,b=3,c=2) # a: 1st, b: 3rd, c: 2nd. NB only a,b,c competed
a4 <- c(a=1,b=3,c=2,d=0,e=0) # a: 1st, b: 3rd, c: 2nd, d,e: DNF

results of ordervec2supp() may be added with "+" [if the observations
are independent]:

H1 <- ordervec2supp(a1) + ordervec2supp(a2) + ordervec2supp(a3)
H2 <- ordervec2supp(a1) + ordervec2supp(a2) + ordervec2supp(a4)

Thus H1 and H2 are identical except for the third race. In H1, 'd'
and 'e' did not compete, but in H2, 'd' and 'e' did not finish (and
notionally came last):

pmax(H1)
pmax(H2) # d,e not finishing affects their estimated strength

ordertrans Order transformation

Description

Given an order vector, shuffle so that the players appear in a specified order.

Usage

ordertrans(x,players)
ordertransplot(ox,oy,plotlims, ...)

64 ordertrans

Arguments

x A (generalized) order vector

players A character vector specifying the order in which the players will be listed; if
missing, use sort(names(x))

ox, oy Rank vectors

plotlims Length two numeric vector giving x and y plot limits. If missing, use sensible
default

... Further arguments, passed to plot()

Details

The best way to describe this function is with an example:

> x <- c(d=2,a=3,b=1,c=4)
> x
d a b c
2 3 1 4

In the above, we see x is an order vector showing that d came second, a came third, b came first,
and c came fourth. This is difficult to deal with because one has to search through the vector to
find a particular competitor, or a particular rank. This would be harder if the vector was longer. If
we wish to answer the question “where did competitor a come? where did b come?” we would
want an order vector in which the competitors are in alphabetical order. This is accomplished by
ordertrans():

> o <- ordertrans(x)
> o
a b c d
3 1 4 2

(this is equivalent to o <- x[order(names(x))]). Object o contains the same information as x, but
presented differently. This says that a came third, b came first, c came fourth, and d came second.
In particular, the Plackett-Luce order statistic is identical:

> ordervec2supp(x) == ordervec2supp(o)
> [1] TRUE

There is a nice example of ordertrans() in inst/eurovision.Rmd, and package vignette ordertrans
provides further discussion and examples.

Function ordertrans() takes a second argument which allows the user to arrange an order vector
into the order specified.

Function ordertrans() also works in the context of hyper3 objects:

x <- c(d=2,a=3,b=1,a=4)
x
d a b a

ordertrans 65

2 3 1 4
ordertrans(x)
a a b d
3 4 1 2

Object x shows that d came second, a came third and fourth, and b came first. We can see that
ordertrans() gives the same information in a more intelligible format. This functionality is useful
in the context of hyper3 likelihood functions.

Value

Returns a named vector

Note

The argument to ordertrans() is technically an order vector because it answers the question
“where did the first-named competitor come?” (see the discussion at rrank). But it is not a help-
ful order vector because you have to go searching through the names—which can appear in any
order—for the competitor you are interested in. I guess “generalised order vector” might be a better
description of the argument.

Author(s)

Robin K. S. Hankin

See Also

rrank

Examples

x <- c(e=4L,a=7L,c=6L,b=1L,f=2L,g=3L,h=5L,i=8L,d=9L)
x
ordertrans(x,letters[1:9])

o <- skating_table[,1]
names(o) <- rownames(skating_table)
o
ordertrans(o)

ordertrans(sample(icons_maxp),icons)

rL <- volvo_maxp # rL is "ranks Likelihood"
rL[] <- rank(-volvo_maxp)

r1 <- volvo_table[,1] # ranks race 1
names(r1) <- rownames(volvo_table)
ordertransplot(rL,r1,xlab="likelihood rank, all races",ylab="rank, race 1")

66 ordervec2supp3

ordervec2supp3 Various functionality for races and hyper3 likelihood functions

Description

Various functions for calculating the likelihood function for order statistics in the context of hyper3
likelihood functions. Compare ggol() for hyper2 objects. Used in the constructor() suite of
analysis.

Usage

num3(v,helped=NULL,lambda=1)
den3(v,helped=NULL,lambda=1)
char2nv(x)
ordervec2supp3(v,nonfinishers=NULL)
ordervec2supp3a(v,nonfinishers=NULL,helped=NULL,lambda=1)
rankvec_likelihood3(v,nonfinishers=NULL)
ordertable2supp3(a)
cheering3(v,e,help,nonfinishers=NULL)
args2ordervec(...)

Arguments

v Ranks in the form of a character vector. Element v[1] is the first-placed com-
petitor, element v[2] the second, and so on. For example, ordervec2supp3(c('b','b','a','c','a'))

nonfinishers Character vector (a set) showing players that did not finish. See details section
and examples

a An ordertable

helped vector of entities being helped

e, help, lambda Parameters controlling non-independence with e a named integer vector speci-
fying equivalence classes of the competitors: names correspond to the competi-
tors, values to their equivalence class, and help a numeric vector with entries
corresponding to the equivalence classes of e and values the strength of the sup-
port

x A character vector of competitors

... Arguments passed to args2ordervec()

Details

Function args2ordervec() takes arguments with names corresponding to players, and entries cor-
responding to performances (e.g. distances thrown by a javelin, or times for completing a race). It
returns a character vector indicating the rank statistic. See examples, and also the javelin vignette.

Function ordervec2supp3() takes character vector showing the order of finishing [i.e. a rank
statistic], and returns a generalized Plackett-Luce support function in the form of a hyper3 object.
It can take the output of args2ordervec() or rrace3(). For example:

ordervec2supp3 67

ordervec2supp3(c("a","b"),nonfinishers=c("a","b"))

corresponds to a race between two twins of strength a and two twins of strength b, with only one of
each pair finishing; a comes first and b comes second; symbolically

a ≻ b ≻ {a, b} −→ L(a, b |a+ b = 1) =
a

2a+ 2b
· b

a+ 2b

Further,

ordervec2supp3(c("a","b"),c("a","b","c"))

corresponds to adding a singleton competitor of strength c who did not finish:

a ≻ b ≻ {a, b, c} −→ L(a, b, c |a+ b+ c = 1) =
a

2a+ 2b+ c
· b

a+ 2b+ c

(observe that this likelihood function is informative about c). See the examples section below.
Experimental function ordervec2supp3a() is a generalized version of ordervec2supp3() that
allows for cheering effects.

Functions num3() and den3() are low-level helper functions that calculate the numerator and
denominator for Plackett-Luce likelihood functions with clones; used in ordervec2supp3() and
ordervec2supp3a().

Function ordertable2supp3() takes an order table (the canonical example is the constructors’
formula 1 grand prix results, see constructor.Rd and returns a generalized Plackett-Luce support
function in the form of a hyper3 object.

Function char2nv() takes a character vector and returns a named vector with entries corresponding
to their names’ counts. It is used in the extraction and replacement methods for hyper3 objects.

Function cheering3() is a generalization of ordervec2supp3(). Competitors who are not men-
tioned in argument e are assumed to be in an equivalence class of size 1, that is, they are not
supported (or indeed suppressed) by anyone else: they are singletons in the terminology of Hankin
(2006). Extensive discussions are presented at inst/plackett_luce_monster.Rmd and inst/eurovision.Rmd.

File inst/javelin.Rmd and inst/race3.Rmd show some use-cases for these functions.

Note

Function ordervec2supp3() is mis-named [it takes a rank vector, not an order vector]; it will be
renamed rankvec_likelihood3(), eventually.

Author(s)

Robin K. S. Hankin

See Also

ordertable2supp,ordertrans

68 pairwise

Examples

ordervec2supp3(c("a","a","b","c","a","b","c"))
ordervec2supp3(rrace3())
ordervec2supp3(c("a","b"),nonfinishers=c("a","b")) # a > b >> {a,b}

(o <- args2ordervec(a=c(1,6,9), b=c(2,3,4), c=c(1.1,11.1)))
H <- ordervec2supp3(o)
H
equalp.test(H) # takes too long for here

Race: six competitors a-f finishing in alphabetical order. Mutually
supporting groups: (acd), (bf), (e). Competitor "e" is not
suppported by anyone else (he is a singleton) so does not need to be
mentioned in argument 'e' and there are only two helpfulnesses to be
considered: that of (acd) and that of (bf), which we will take to be
1.88 and 1.1111 respectively:

cheering3(v=letters[1:6],e=c(a=1,c=1,b=2,d=1,e=2),help=c(1.88,1.1111))

Another race: four competitors, including two clones of "a", and two
singletons "b" and "c". Here "a" helps his clone at 1.88; and "b"
and "c" help one another at 1.111:

cheering3(v=c("a","b","a","c"),e=c(a=1,b=2,c=2),help=c(1.8,1.111))

Same race as above but this time there are two clones of "b", one of
whom did not finish:

cheering3(v=c("a","b","a","c"),e=c(a=1,b=2,c=2),help=c(1.8,1.111),"b")

Most common case would be that the clones help each other but noone
else:

cheering3(v=c("a","b","a","c"),e=c(a=1,b=2,c=3),help=c(1.8,1.111,1),"b")

pairwise Pairwise comparisons

pairwise 69

Description

Function pairwise() takes a matrix of pairwise comparisons and returns a hyper2 likelihood func-
tion. Function zermelo() gives a standard iterative procedure for likelihood maximization of pair-
wise Bradley-Terry likelihoods (such as those produced by function pairwise()).

Function home_away() takes two matrices, one for home wins and one for away wins. It returns
a hyper2 support function that includes a home advantage ghost. Function home_away3() is the
same, but returns a hyper3 object. A complex matrix is interpreted as real parts being the home
wins and imaginary parts away wins.

Function white_draw3() returns a hyper3 likelihood function for pairwise comparisons, one of
whom has a home team-type advantage (white player in the case of chess). It is designed to work
with an array of dimensions n×n×3, where n is the number of players. It is used in inst/kka.Rmd
to create chess3 likelihood function.

Usage

pairwise(M)
zermelo(M, maxit = 100, start, tol = 1e-10, give = FALSE)
home_away(home_games_won, away_games_won)
home_away3(home_games_won, away_games_won,lambda)
white_draw3(A,lambda,D)

Arguments

M Matrix of pairwise comparison results

maxit Maximum number of iterations

start Starting value for iteration; if missing, use equalp()

tol Numerical tolerance for stopping criterion

give Boolean with default FALSE meaning to return the evaluate and TRUE meaning
to return all iterations

home_games_won, away_games_won
Matrices showing home games won and away games won

lambda The home ground advantage (or white advantage in chess)

D Weight of draw

A Array of dimension n*n*3, with A[,,i] corresponding to white wins, white
draws, and white losses for i=1,2,3. The canonical example would be kka_array,
see inst/kka.Rmd for details

Details

In function zermelo(), the diagonal is disregarded.

If home_games_won is complex, then the real parts of the entries are interpreted as home games
won, and the imaginary parts as away games won.

70 pairwise

Note

An extended discussion of pairwise() is given in inst/zermelo.Rmd and also inst/karate.Rmd.
Functions home_away() and home_away3() are described and used in inst/home_advantage.Rmd;
see Davidson and Beaver 1977.

Experimental function pair3() is now removed as dirichlet3() is more general and has nicer
idiom; pair3(a=4, b=3, lambda=1.88) and dirichlet3(c(a=4, b=3), 1.88) give identical out-
put.

Author(s)

Robin K. S. Hankin

References

• D. R. Hunter 2004. “MM algorithms for generalized Bradley-Terry models”. The Annals of
Statistics, volume 32, number 1, pages 384–406

• S. Borozki and others 2016. “An application of incomplete pairwise comparison matrices for
ranking top tennis players”. arXiv:1611.00538v1 10.1016/j.ejor.2015.06.069

• R. R. Davidson and R. J. Beaver 1977. “On extending the Bradley-Terry model to incorporate
within-pair order effects”. Biometrics, 33:693–702

See Also

maxp

Examples

#Data is the top 5 players from Borozki's table 1

M <- matrix(c(
0,10,0, 2,5,
4, 0,0, 6,6,
0, 0,0,15,0,
0, 8,0, 0,7,
1 ,0,3, 0,0
),5,5,byrow=TRUE)
players <- c("Agassi","Becker","Borg","Connors","Courier")
dimnames(M) <- list(winner=players,loser=players)
M
e.g. Agassi beats Becker 10 times and loses 4 times
pairwise(M)
zermelo(M)
maxp(pairwise(M)) # should be identical (takes ~10s to run)

M2 <- matrix(c(NA,19+2i,17,11+2i,16+5i,NA,12+4i,12+6i,12+2i,19+10i,
NA,12+4i,11+2i,16+2i,11+7i,NA),4,4)
teams <- LETTERS[1:4]
dimnames(M2) <- list("@home" = teams,"@away"=teams)
home_away(M2)
home_away3(M2,lambda=1.2) # works but takes too long (~3s)

pentathlon 71

home_away3(M2[1:3,1:3],lambda=1.2)

M <- kka_array[,,1] + 1i*kka_array[,,3] # ignore draws
home_away(M)
home_away3(M,lambda=1.3) # works but takes too long (~3s)

white_draw3(kka_array,1.88,1.11)

pentathlon Pentathlon

Description

Results from the Men’s pentathlon at the 2004 Summer Olympics

Usage

data(pentathlon)

Format

A hyper2 object that gives a likelihood function

Details

Object pentathlon is a hyper2 object that gives a likelihood function for the strengths of the top
seven competitors at the Modern Men’s Pentathlon, 2004 Summer Olympics.

Object pentathlon_table is an order table: a data frame with rows being competitors, columns
being disciplines, and entries being places. Thus looking at the first row, first column we see that
Moiseev placed fifth at shooting.

These objects can be generated by running script inst/pentathlon.Rmd, which includes some
further discussion and technical documentation and creates file pentathlon.rda which resides in
the data/ directory.

Note

Many of the competitors’ names have diacritics, which I have removed.

References

“Wikipedia contributors”, Modern pentathlon at the 2004 Summer Olympics - Men’s. Wikipedia,
The Free Encyclopedia, https://en.wikipedia.org/w/index.php?title=Modern_pentathlon_
at_the_2004_Summer_Olympics_%E2%80%93_Men%27s&oldid=833081611, [Online; accessed 5-
March-2020]

See Also

ordertable

https://en.wikipedia.org/w/index.php?title=Modern_pentathlon_at_the_2004_Summer_Olympics_%E2%80%93_Men%27s&oldid=833081611
https://en.wikipedia.org/w/index.php?title=Modern_pentathlon_at_the_2004_Summer_Olympics_%E2%80%93_Men%27s&oldid=833081611

72 powerboat

Examples

data(pentathlon)
pie(pentathlon_maxp)

powerboat Powerboat dataset

Description

Race results from the 2018 F1 Powerboat World Championship

Usage

data(powerboat)

Details

Object powerboat_table is a dataframe of results showing ranks of 21 drivers in the 2018 F1
Powerboat World Championship. The format is standard, that is, can be interpreted by function
ordertable2supp() and indeed ordertable2supp(powerboat_table[,1:7]) gives the corre-
sponding support function, powerboat.

File inst/powerboat.txt is the source text file; to create powerboat_table use

read.table(system.file("powerboat.txt",package="hyper2"))

The dataset used here corrects an apparent typo in the wikipedia table (see github issue 37).

These objects can be generated by running script inst/powerboat.Rmd, which includes some fur-
ther discussion and technical documentation and creates file powerboat.rda which resides in the
data/ directory.

Note

Many drivers have names with diacritics, which have been removed from the dataframe.

References

Wikipedia contributors. (2019, October 9). 2018 F1 Powerboat World Championship. In Wikipedia,
The Free Encyclopedia. Retrieved 00:45, February 21, 2020, from https://en.wikipedia.org/
w/index.php?title=2018_F1_Powerboat_World_Championship&oldid=920386507

See Also

ordertable2supp

Examples

pie(powerboat_maxp)

https://en.wikipedia.org/w/index.php?title=2018_F1_Powerboat_World_Championship&oldid=920386507
https://en.wikipedia.org/w/index.php?title=2018_F1_Powerboat_World_Championship&oldid=920386507

Print 73

Print Print methods

Description

Print methods for hyper2 and hyper3 objects

Usage

S3 method for class 'hyper2'
print(x, ...)
S3 method for class 'hyper3'
print(x, ...)

Arguments

x An object of class hyper2 or hyper3

... Further arguments, currently ignored

Details

Used mainly for their side-effect of printing the log-likelihood function. In the print method, a
natural logarithm is indicated with “log()”—not “ln()”—consistent with R builtin terminology
base::log().

The hyper2 print method is sensitive to option give_warning_on_nonzero_power_sum. If TRUE, a
warning is issued if the powers have nonzero sum. This is usually what you want because observa-
tions are typically multinomial; a warning indicates nonzero sum of powers, which should prompt
us to check the coding. Vignette zeropower gives a discussion of this issue.

Value

Returns the hyper2 or hyper3 object it was sent, invisibly. Function pnv() converts a named vector
to a character string that is used in the hyper3 print method.

Author(s)

Robin K. S. Hankin

Examples

data(chess)
chess

74 profile

profile Profile likelihood and support

Description

Given a support function, return a profile likelihood curve

Usage

profsupp(H, i, p, relative=TRUE, ...)
profile_support_single(H, i, p, evaluate=FALSE, ...)

Arguments

H hyper2 object

i Name of player for which profile support is to be calculated

p Strength of element i

evaluate Boolean, with default FALSE meaning to return the maximal support for p_i=p
and TRUE meaning to return the evaluate

relative Boolean; if TRUE (default), return the support relative to the maximum support
attained; if false, return the support as returned by profile_support_single().

... Arguments passed to maxp()

Value

Returns the support at a particular value of pi, or the evaluate conditional on pi.

Author(s)

Robin K. S. Hankin

See Also

loglik

Examples

Not run: # takes too long
p <- seq(from=0.5,to=0.4,len=10)
u <- profsupp(icons,"NB",p)
plot(p,u-max(u))
abline(h=c(0,-2))

End(Not run)

psubs 75

psubs Substitute players of a hyper2 object

Description

Given a hyper2 object, substitute some players

Usage

psubs(H, from, to)
psubs_single(H, from, to)

Arguments

H hyper2 object

from, to Character vector of players to substitute and their substitutes

Details

Function psubs() substitutes one or more player names, replacing player from[i] with to[i]. If
argument to is missing, all players are substituted, the second argument taken to be the replacement:
interpret psubs(H,vec) as psubs(H,from=pnames(H),to=vec).

Compare pnames<-(), which can only add players, or reorder existing players.

Function psubs_single() is a low-level helper function that takes a single player and its substitute;
it is not intended for direct use.

Value

Returns a hyper2 object

Author(s)

Robin K. S. Hankin

Examples

psubs(icons,c("L","NB"),c("London","Norfolk Broads"))

rhyper2() |> psubs(letters,LETTERS) # ignore i,j,k,...,z

psubs(icons,tolower(pnames(icons)))

76 pwa

pwa Player with advantage

Description

Commonly, when considering competitive situations we suspect that one player has an advantage
of some type which we would like to quantify in terms of an additional strength. Examples might
include racing at pole position, playing white in chess, or playing soccer at one’s home ground.
Function pwa() (“player with advantage”) returns a modified hyper2 object with the additional
strength represented as a reified entity.

Usage

pwa(H, pwa, chameleon = "S")

Arguments

H A hyper2 object

pwa A list of the players with the supposed advantage; may be character in the case
of a named hyper2 object, or an integer vector

chameleon String representing the advantage

Details

Given an object of class hyper2 and a competitor a, we replace every occurrence of a with a+S,
with S representing the extra strength conferred.

However, the function also takes a vector of competitors. If there is more than one competitor, the
resulting likelihood function does not seem to instantiate any simple situation.

Nice examples of pwa() are given in ‘inst/cook.Rmd’ and ‘inst/universities.Rmd’.

Value

Returns an object of class hyper2.

Note

Earlier versions of this package gave a contrived sequence of observations, presented as an example
of pwa() with multiple advantaged competitors. I removed it because the logic was flawed, but it
featured a chameleon who could impersonate (and indeed eat) certain competitors, which is why
the third argument is so named.

The aliases commemorate some uses of the function in the vignettes and markdown files in the
‘inst/’ directory.

Author(s)

Robin K. S. Hankin

ranktable 77

See Also

ordervec2supp

Examples

summary(formula1 |> pwa("Hamilton","pole"))

H <- ordervec2supp(c(a = 2, b = 3, c = 1, d = 5, e = 4))
pwa(H,'a')

Four races between a,b,c,d:
H1 <- ordervec2supp(c(a = 1, b = 3, c = 4, d = 2))
H2 <- ordervec2supp(c(a = 0, b = 1, c = 3, d = 2))
H3 <- ordervec2supp(c(a = 4, b = 2, c = 1, d = 3))
H4 <- ordervec2supp(c(a = 3, b = 4, c = 1, d = 2))

Now it is revealed that a,b,c had some advantage in races 1,2,3
respectively. Is there evidence that this advantage exists?

Not run: # takes ~10 seconds, too long for here
specificp.test(pwa(H1,'a') + pwa(H2,'b') + pwa(H3,'c') + H4,"S")

End(Not run)

ranktable Convert rank tables to and from order tables

Description

Convert rank tables (as generated by rrank(), for example) to order tables like the formula 1
tables; and convert back. Print and summary methods for rank tables are documented here. See also
ordertable.Rd.

Usage

ranktable_to_ordertable(xrank)
ordertable_to_ranktable(xorder)
wikitable_to_ranktable(wikitable, strict=FALSE)
S3 method for class 'ranktable'
summary(object, ...)
ranktable_to_printable_object(x)
S3 method for class 'ranktablesummary'
print(x,...)

78 ranktable

Arguments

x, xrank, object A rank table, an object with class ranktable, for example the value of rrank()
xorder, wikitable

Order tables. Argument wikitable refers to a generalized order table which
can include entries such as DNF signifying did not finish.

strict Controls for wikitable_to_ranktable()

... Further arguments (currently ignored)

Details

Function ranktable_to_ordertable() is trivial; ordertable_to_ranktable() less so. The pro-
totype for order tables would be skating_table.

Function ordertable_to_ranktable(x) checks for each column being a permutation of seq_len(nrow(x))
and, if not, it stops. In particular, DNF entries are out of scope. To convert order tables such as
F1_table_2017, which include DNF entries, use wikitable_to_ranktable() or ordertable2supp()
to produce a likelihood function.

Function ranktable_to_printable_object() is a helper function that coerces a ranktable ob-
ject to a matrix that prints nicely.

The print method is discussed in inst/ordertable_to_ranktable.Rmd.

Value

An order table or rank table

Author(s)

Robin K. S. Hankin

See Also

rrank, ordertable2supp

Examples

p <- (5:1)/15
names(p) <- letters[1:5]
xrank <- rrank(12,p,rnames=month.abb)
xorder <- ranktable_to_ordertable(xrank)

Can convert back and forth:
identical(xrank,ordertable_to_ranktable(ranktable_to_ordertable(xrank)))

maxp(ordertable2supp(xorder)) # should be close to p
ordertable_to_ranktable(skating_table)

convert a rank table to a support function:
rank_likelihood(wikitable_to_ranktable(volvo_table))

rhyper2 79

rhyper2 Random hyper2 objects

Description

Random hyper2 loglikelihood functions, intended as quick “get you going” examples

Usage

rhyper2(n = 8, s = 5, pairs = TRUE, teams = TRUE, race = TRUE, pnames)

Arguments

n Number of competitors, treated as even

s Integer, Measure of the complexity of the log likelihood function

pairs, teams, race
Boolean, indicating whether or not to include different observations

pnames Character vector of names, if missing interpret as letters; set to NA meaning
no names

Note

Function rhyper2() returns a likelihood function based on random observations. To return a ran-
dom probability vector drawn from a from a given (normalized) likelihood function, use rp().

Author(s)

Robin K. S. Hankin

See Also

rp,rrace

Examples

rhyper2()
rp(2,icons)

80 rhyper3

rhyper3 Random hyper3 objects

Description

Various random hyper3 objects, in the context of the race metaphor. They return “get you going”
examples of hyper3 objects. The defaults correspond to simple but non-trivial with straightforward
interpretations.

The defaults are

pn: c(a=2, b=4, c=2, d=1) # numbers (two "a"s, four "b"s etc)
ps: c(a=0.3, b=0.1, c=0.2, d=0.4) # strengths

Usage

rwinner3(pn=c(a=2,b=4,c=2,d=1),ps=c(a=0.3, b=0.1,c=0.2,d=0.4))
rpair3(n=5,s=3,lambda=1.3)
rrace3(pn=c(a=2,b=4,c=2,d=1),ps=c(a=0.3, b=0.1,c=0.2,d=0.4))
rracehyper3(n=4,size=9,ps=NULL,races=3)
rhyper3(n=5,s=4,type='race',...)

Arguments

pn A named integer vector showing numbers of each type of player

ps A named vector showing strengths of each type of player
n, size, races, s, type

Arguments specifying the complexity of the random hyper3 object returned.
See details

lambda Parameter

... Further arguments passed to rracehyper3() or rpair3()

Details

These functions return hyper3 objects, as indicated by the 3 in their names.

• Function rwinner3() is a low-level helper function that takes a player number argument pn,
and a player strength argument ps. It performs an in silico race, and returns the (name of)
the winner, chosen randomly from a field of runners with appropriate strengths. It is used
repeatedly by rrace3() to select a winner from the diminishing pool of still-running players.

• Function rpair3() returns a hyper3 object corresponding to repeated pairwise comparisons
including a white-player advantage represented by lambda.

• Function rrace3() returns a rank statistic corresponding to finishing order for a Plackett-Luce
race. The output can be passed to ordervec2supp3().

rowing 81

• Function rracehyper3() returns a more complicated hyper3 object corresponding to re-
peated races.

• Function rhyper3() returns an even more complicated hyper3 object corresponding to re-
peated races and pairwise comparisons.

Argument n generally specifies the number of distinct types of players. Files inst/mann_whitney_wilcoxon.Rmd
and inst/javelin.Rmd show some use-cases for these functions.

Note

In function rracehyper3() [and by extension rhyper3()], if argument n exceeds 26 and argument
pn takes its default value of NULL, then an error will be returned because there are only 26 players,
one for each letter a-z.

Author(s)

Robin K. S. Hankin

See Also

rrank,ordertable2supp,ordertrans

Examples

rracehyper3()
rrace3()
rwinner3()
rhyper3()
rpair3()
ordervec2supp3(rrace3())

table(replicate(100,which(rrace3(pn=c(a=1,b=10),ps=c(a=0.9,b=0.1))=='a')))

rowing Rowing dataset, sculling

Description

Data from Men’s single sculls, 2016 Summer Olympics

Usage

data(rowing)

Format

Object rowing is a hyper2 object that gives a likelihood function for the 2016 men’s sculls.

82 rp

Details

Object rowing is created by the code in inst/rowing.Rmd. This reads file inst/rowing.txt, each
line of which is a heat showing the finishing order. Object rowing_table is the corresponding R
list.

File inst/rowing_minimal.txt has the same data but with dominated players (that is, any group
of players none of whom have beaten any player not in the group) have been removed. This is
because dominated players have a ML strength of zero.

References

Wikipedia contributors, “Rowing at the 2016 Summer Olympics—Men’s single sculls”, Wikipedia,
The Free Encyclopedia, https://en.wikipedia.org/w/index.php?title=Rowing_at_the_2016_
Summer_Olympics_%E2%80%93_Men%27s_single_sculls&oldid=753517240 (accessed December
7, 2016).

See Also

ggrl

Examples

dotchart(rowing_maxp)

rp Random samples from the prior of a hyper2 object

Description

Uses Metropolis-Hastings to return random samples from the prior of a hyper2 object

Usage

rp(n, H, startp = NULL, fcm = NULL, fcv = NULL, SMALL = 1e-06, l=loglik, fillup=TRUE, ...)

Arguments

H Object of class hyper2

n Number of samples

startp Starting value for the Markov chain, with default NULL being interpreted as start-
ing from the evaluate

fcm, fcv Constraints as for maxp()

SMALL Notional small value for numerical stability

l Log-likelihood function with default loglik()

fillup Boolean, with default TRUE meaning to return a matrix with the fillup value
added, and column names matching the pnames() of argument H

... Further arguments, currently ignored

https://en.wikipedia.org/w/index.php?title=Rowing_at_the_2016_Summer_Olympics_%E2%80%93_Men%27s_single_sculls&oldid=753517240
https://en.wikipedia.org/w/index.php?title=Rowing_at_the_2016_Summer_Olympics_%E2%80%93_Men%27s_single_sculls&oldid=753517240

rrace 83

Details

Uses the implementation of Metropolis-Hastings from the MCE package to sample from the posterior
PDF of a hyper2 object.

If the distribution is Dirichlet, use rdirichlet() to generate random observations: it is much
faster, and produces serially independent samples. To return uniform samples, use rp_unif() (doc-
umented at dirichlet.Rd).

Value

Returns a matrix, each row being a unit-sum observation.

Note

Function rp() a random sample from a given normalized likelihood function. To return a random
likelihood function, use rhyper2().

File inst/ternaryplot_hyper2.Rmd shows how to use Ternary::ternaryPlot() with rp().

Author(s)

Robin K. S. Hankin

See Also

maxp,loglik,dirichlet,rhyper2

Examples

rp(10,icons)

plot(loglik(rp(30,icons),icons),type='b')

rrace A random race with given BT strengths

Description

Returns a rank vector suitable for interpretation with race().

Usage

rrace(strengths)

Arguments

strengths Named vector with names being players and values being their Bradley-Terry
strengths

84 rrank

Details

Uses a simple recursive system to generate the ranks.

Value

Returns a character vector with entries corresponding to the competitor. The first element is the
winner, the second the runner-up, and so on, until the final element is the last to cross the finishing
line.

Author(s)

Robin K. S. Hankin

See Also

rrace3,hyper2

Examples

o <- c(a=0.4, b=0.3, c=0.2, d=0.1)
rrace(o)

rankvec_likelihood(rrace(o))

D <- t(replicate(10,rrace(o))) # 10 races
H <- hyper2()
for(i in seq_len(nrow(D))){H <- H+rankvec_likelihood(D[i,])}
maxp(H) # should be close to o

rrank Random ranks

Description

A function for producing ranks randomly, consistent with a specified strength vector

Usage

rrank(n = 1, p, pnames=NULL, fill = FALSE, rnames=NULL)
S3 method for class 'ranktable'
print(x, ...)
rrank_single(p)
rorder_single(p)

rrank 85

Arguments

n Number of observations

p Strength vector

pnames Character vector (“player names”) specifying names of the columns

rnames Character vector (“row names” or “race names”) specifying names of the rows

fill Boolean, with default FALSE meaning to interpret the elements of p as strengths,
notionally summing to one; and TRUE meaning to augment p with a fillup value

x, ... Arguments passed to the print method

Value

If n=1, rrank() returns a vector; if n>1 it returns a matrix with n rows, each corresponding to a
ranking. The canonical example is a race in which the probability of competitor i coming first is
pi/
∑

pj , where the summation is over the competitors who have not already finished.

If, say, the first row of rrank() is c(2,5,1,3,4), then competitor 2 came first, competitor 5 came
second, competitor 1 came third, and so on.

Note that function rrank() returns an object of class ranktable, which has its own special print
method. The column names appear as “c1, c2, ...” which is intended to be read “came first”,
“came second”, and so on. The difference between rank and order can be confusing.

> x <- c(a=3.01, b=1.04, c=1.99, d=4.1)
> x

a b c d
3.01 1.04 1.99 4.10
> rank(x)
a b c d
3 1 2 4
> order(x)
[1] 2 3 1 4

In the above, rank() shows us that element a of x (viz 3.01) is the third largest, element b (viz 1.04)
is the smallest, and so on; order(x) shows us that the smallest element x is x[2], the next smallest
is x[3], and so on. Thus x[order(x)] == sort(x), and rank(x)[order(x)] == seq_along(x).
In the current context we want ranks not orders; we want to know who came first, who came second,
and so on:

R> rrank(2,(4:1)/10)
c1 c2 c3 c4

[1,] 2 3 1 4
[2,] 1 3 2 4
R>

In the above, each row is a race; we have four runners and two races. In the first race (the top row),
runner number 2 came first, runner 3 came second, runner 1 came third, and so on. In the second
race (bottom row), runner 1 came first, etc. Taking the first race as an example:

86 rrank

Rank: who came first? runner 2. Who came second? runner 3. Who came third? runner 1. Who
came fourth? runner 4. Recall that the Placket-Luce likelihood for a race in which the rank statistic
was 2314 (the first race) would be p2

p2+p3+p1+p4
· p3

p3+p1+p4
· p1

p1+p4
· p4

p4
.

Order: where did runner 1 come? third. Where did runner 2 come? first. Where did runner 3
come? second. Where did runner 4 come? fourth. Thus the order statistic would be 3124.

Function rrank() is designed for rank_likelihood(), which needs rank data, not order data.
Vignette “skating_analysis” gives another discussion.

Note that function rrank() returns an object of class “rrank”, which has its own print method.
This can be confusing. Further details are given at ranktable.Rd.

Function rrank_single() is a low-level helper function:

> p <- c(0.02,0.02,0.9,0.02,0.02,0.02) # competitor 3 the strongest
> rank_single(p)
[1] 3 2 4 6 4 1

Above, we see from p that competitor 3 is the strongest, coming first with 90% probability. And
indeed the resulting rank statistic given by rorder_single() shows competitor 3 coming first, 2
coming second, and so on. Compare rrank_single():

> rorder_single(p)
[1] 6 3 1 4 5 2
>

Above we see see from rrank_single(p) that competitor 1 came sixth, competitor 2 came third,
and competitor 3 came first (as you might expect, as competitor 3 is the strongest). Note that the R
idiom for rorder_single() is the same as that used in the permutations package for inverting a
permutation: o[o] <-seq_along(o).

Note

Similar functionality is given by rrace(), documented at rhyper3.

Author(s)

Robin K. S. Hankin

See Also

ordertrans,rank_likelihood,skating,rhyper3

Examples

rrank_single(zipf(9))

ptrue <- (4:1)/10
names(ptrue) <- letters[1:4]
rrank(10,p=ptrue)

https://CRAN.R-project.org/package=permutations

skating 87

H <- rank_likelihood(rrank(40,p=ptrue))

Following code commented out because they take too long:

mH <- maxp(H) # should be close to ptrue
H <- H + rank_likelihood(rrank(30,mH)) # run some more races
maxp(H) # revised estimate with additional data

skating Figure skating at the 2002 Winter Olympics

Description

A likelihood function for the competitors at the Ladies’ Free Skate at the 2002 Winter Olympics

Usage

skating

Details

Three objects skating, a log-likelihood function for the competitors’ strengths, skating_table,
an order table for each of the 9 judges, and skating_maxp, the result of maxp(skating), which is
included to save time in the examples.

These objects can be generated by running script inst/skating.Rmd, which includes some further
discussion and technical documentation. The dataset is interesting because it has been analysed by
many workers, including Lock and Lock, for consistency between the judges.

Note that file is structured so that each competitor is a row, and each judge is a column. Function
rank_likelihood() requires a transpose of this to operate.

Object skating_table is an order table, taken from Lock and Lock. It corrects what appears to be
an error in which judge 5 ranked both Butyrskaya and Kettunen 12; there is no 13. Using EM, I
reckon that Butyrskaya should be ranked twelfth and Kettunen thirteenth.

Note

There is an (Rbuildignore-d) discussion of a skeleton dataset in the inst/ directory of the repo,
it’s easy to confuse this with skating.

Author(s)

Robin K. S. Hankin

88 soling

References

• https://en.wikipedia.org/wiki/Figure_skating_at_the_2002_Winter_Olympics#Full_
results_2

• Robin Lock and Kari Frazer Lock, Winter 2003. “Judging Figure Skating Judges”. STATS 36,
ASA

Examples

data(skating)
dotchart(skating_maxp)

ordertable_to_ranktable(skating_table)

rL <- sort(skating_maxp,decreasing=TRUE)
rL[] <- seq_along(rL)
rO <- seq_len(nrow(skating_table))
names(rO) <- rownames(skating_table)
ordertransplot(rO,rL,

xlab="official rank",ylab="likelihood rank",
main="Ladies free skating, 2002 Winter Olympics")

soling Sailing at the 2000 Summer Olympics - soling

Description

Race results from the 2000 Summer Olympics: soling

Usage

data(soling)

Format

A hyper2 object that gives a likelihood function

Details

The Soling three person keelboat event at the 2000 Summer Olympic games furnishes a rich dataset.
An order table and likelihood function is given in the package as soling_table and soling re-
spectively. Data from the round robins and the quarter final is given in matrices soling_rr1,
soling_rr2, soling_qf respectively.

These objects can be generated by running script inst/soling.Rmd, which includes some further
discussion and technical documentation, and creates file soling.rda which resides in the data/
directory.

https://en.wikipedia.org/wiki/Figure_skating_at_the_2002_Winter_Olympics#Full_results_2
https://en.wikipedia.org/wiki/Figure_skating_at_the_2002_Winter_Olympics#Full_results_2

summary.hyper2 89

References

Wikipedia contributors, “Sailing at the 2000 Summer Olympics - Soling,” Wikipedia, The Free En-
cyclopedia, https://en.wikipedia.org/w/index.php?title=Sailing_at_the_2000_Summer_
Olympics_%E2%80%93_Soling&oldid=945362535 (accessed March 23, 2020).

See Also

ordertable2supp

Examples

data(soling)
ordertable_to_ranktable(soling_table)
pie(soling_maxp)

summary.hyper2 Summary method for hyper2 objects

Description

Give a summary of a hyper2 object, and a print method

Usage

S3 method for class 'hyper2'
summary(object, ...)
S3 method for class 'summary.hyper2'
print(x, ...)

Arguments

object, x Object of class hyper2
... Further arguments, currently ignored

Details

Mostly self-explanatory, based on the equivalent in the untb package.

Author(s)

Robin K. S. Hankin

See Also

hyper2

Examples

summary(icons)

https://en.wikipedia.org/w/index.php?title=Sailing_at_the_2000_Summer_Olympics_%E2%80%93_Soling&oldid=945362535
https://en.wikipedia.org/w/index.php?title=Sailing_at_the_2000_Summer_Olympics_%E2%80%93_Soling&oldid=945362535

90 suplist

suplist Methods for suplist objects

Description

Basic functionality for lists of hyper2 objects, allowing the user to concatenate independent obser-
vations which are themselves composite objects such as returned by ggrl().

Usage

S3 method for class 'suplist'
Ops(e1, e2)
S3 method for class 'suplist'
sum(x,...,na.rm=FALSE)
suplist_add(e1,e2)
suplist_times_scalar(e1,e2)
as.suplist(L)

Arguments

e1, e2 Objects of class suplist, here interpreted as a list of possible likelihood func-
tions (who should be added)

x, ..., na.rm In the sum() method, objects to be summed; na.rm is currently ignored

L A list of hyper2 objects

Details

A suplist object is a list of hyper2 objects. Each element is a hyper2 object that is consistent with
an incomplete rank observation R; the list elements are exclusive and exhaustive for R. If S is a
suplist object, and S=list(H1,H2,...,Hn) where the Hi are hyper2 objects, then Prob(p|H1)+
· · ·+ Prob(p|Hn). This is because the elements of a suplist object are disjoint alternatives.

It is incorrect to say that a likelihood function LS(p) for p is the sum of separate likelihood
functions. This is incorrect because the arbitrary multiplicative constant messes up the math, for
example we might have LH1

(p) = C1Prob(p|H1) and LH2
(p) = C2Prob(p|H2) and indeed

LH1∪H2
(p) = C12 (Prob(p|H1) + Prob(p|H2)) but

LH1
(p) + LH2

(p) ̸= C1Prob(p|H1) + C2Prob(p|H2)

(the right hand side is meaningless).

Functions suplist_add() and sum.suplist() implement “S1+S2” as the support function for
independent observations S1 and S2. The idea is that the support functions “add” in the following
sense. If S1=list(H1,...,Hr) and S2=list(I1,...,Is) where Hx,Ix are hyper2 objects, then
the likelihood function for “S1+S2” is the likelihood function for S1 followed by (independent) S2.
Formally

suplist 91

Prob(p|S1 + S2) = (Prob(p|H1) + · · ·+ Prob(p|Hr)) · (Prob(p|I1) + · · ·+ Prob(p|Is))

log Prob(p|S1+S2) = log (Prob(p|H1) + · · ·+ Prob(p|Hr))+log (Prob(p|I1) + · · ·+ Prob(p|Is))

However, S1+S2 is typically a large and unwieldy object, and can be very slow to evaluate. These
functions are here because they provide slick package idiom.

The experimental lsl mechanism furnishes an alternative methodology which is more computation-
ally efficient at the expense of a non-explicit likelihood function. It is not clear at present (2022)
which of the two systems is better.

Value

Returns a suplist object.

Author(s)

Robin K. S. Hankin

See Also

Ops.hyper2,Extract,loglik

Examples

W <- hyper2(pnames=letters[1:5])
W1 <- ggrl(W, 'a', letters[2:3],'d') # 2-element list
W2 <- ggrl(W, 'e', letters[1:3],'d') # 6-element list
W3 <- ggrl(W, 'c', letters[4:5],'a') # 2-element list

likelihood function for independent observations W1,W2,W3:

W1+W2+W3 # A 2*6*2=24-element list

like_single_list(equalp(W),W1+W2+W3)
Not run: dotchart(maxplist(W1+W1+W3),pch=16) # takes a long time

a <- lsl(list(W1,W2,W3),4:6) # observe W1 four times, W2 five times and W3 six times
loglik_lsl(equalp(W),a,log=TRUE)

92 T20

surfing Surfing dataset

Description

Data from the 2019 World Surf League (WSL) tour

Usage

data(surfing)

Details

The package contains four datasets from WSL 2019:

• surfing, a log likelihood function for the strengths of the competitors

• surfing_maxp, corresponding precalculated evaluate

• surfing_venuetypes, a dataframe showing the beach types at the different venues of the tour

These objects can be generated by running script inst/surfing.Rmd, which includes some further
discussion and technical documentation and creates file surfing.rda which resides in the data/
directory.

Author(s)

Robin K. S. Hankin

Examples

dotchart(surfing_maxp)

T20 Indian Premier League T20 cricket

Description

Cricket dataset, T20 Indian Premier League 2008-2017

Usage

data(T20)

table_tennis 93

Details

Dataframe T20_table has one row for each T20 IPL match in the period 2008-2017 with the ex-
ception of seven drawn matches and three no-result matches which were removed. Object T20 is
a likelihood function for the strengths of the 13 teams, and T20_toss is a likelihood function that
also includes a toss strength term.

These objects can be generated by running script inst/T20.Rmd, which is based on Chandel and
Hankin 2019. This includes some further discussion and technical documentation and creates file
T20.rda which resides in the data/ directory.

References

• T. Chandel and R. K. S. Hankin 2019. “Analysing the impact of winning a coin toss in the
Indian Premier League”. Auckland University of Technology.

Examples

summary(T20)
dotchart(T20_maxp)

table_tennis Match outcomes from repeated table tennis matches

Description

Match outcomes from repeated singles table tennis matches

Usage

data(table_tennis)

Format

A likelihood function corresponding to the match outcomes listed below.

Details

There are four players, A, B, and C, who play singles table tennis matches with the following results:

• A vs B, A serves, 5-1

• A vs B, B serves, 1-3

• A vs C, A serves, 4-1

• A vs C, C serves, 1-2

As discussed in vignette table_tennis_serve, we wish to assess the importance of the serve. The
vignette presents a number of analyses including a profile likelihood plot.

See vignette table_tennis_serve for an account of how to create table_tennis.

94 tennis

Examples

data(table_tennis)
dotchart(maxp(table_tennis))

tennis Match outcomes from repeated doubles tennis matches

Description

Match outcomes from repeated doubles tennis matches

Usage

data(tennis)

Format

A hyper2 object corresponding to the match outcomes listed below.

Details

There are four players, p1 to p4. These players play doubles tennis matches with the following
results:

match score
{p1, p2} vs {p3, p4} 9-2
{p1, p3} vs {p2, p4} 4-4
{p1, p4} vs {p2, p3} 6-7

{p1} vs {p3} 10-14
{p2} vs {p3} 12-14
{p1} vs {p4} 10-14
{p2} vs {p4} 11-10
{p3} vs {p4} 13-13

It is suspected that p1 and p2 have some form of team cohesion and play better when paired than
when either solo or with other players. As the scores show, each player and, apart from p1-p2, each
doubles partnership, is of approximately the same strength.

Dataset tennis gives the appropriate likelihood function for the players’ strengths; and dataset
tennis_ghost gives the appropriate likelihood function if the extra strength due to team cohesion
of {p1, p2} is represented by a ghost player.

These objects can be generated by running script inst/tennis.Rmd, which includes some further
discussion and technical documentation and creates file tennis.rda which resides in the data/
directory.

tests 95

Source

Doubles tennis matches at NOCS, Jan-May 2008

References

Robin K. S. Hankin (2010). “A Generalization of the Dirichlet Distribution”, Journal of Statistical
Software, 33(11), 1-18

Examples

summary(tennis)

tennis |> psubs(c("Federer","Laver","Graf","Navratilova"))

Following line commented out because it takes too long:
specificp.gt.test(tennis_ghost,"G",0)

tests Hypothesis testing

Description

Tests different nulls against a free alternative

Usage

equalp.test(H, startp=NULL, ...)
knownp.test(H, p, ...)
samep.test(H, i, give=FALSE, startp=NULL, ...)
specificp.test(H, i, specificp=1/size(H),

alternative = c("two.sided","less","greater"), ...)
specificp.ne.test(H, i, specificp=1/size(H), ...)
specificp.gt.test(H, i, specificp=1/size(H), delta=1e-5, ...)
specificp.lt.test(H, i, specificp=1/size(H), ...)
S3 method for class 'hyper2test'
print(x, ...)

Arguments

H A likelihood function, an object of class hyper2

p In equalp.test(), putative strength vector to be tested

... Further arguments passed by equalp.test() to maxp() and ignored by print.hyper2test()

startp Starting value for optimization

i A character vector of names

specificp Strength, real number between 0 and 1

96 tests

alternative a character string specifying the alternative hypothesis, must be one of two.sided
(default), greater or less. You can specify just the initial letter (taken from
t.test.Rd)

give Boolean, with TRUE meaning to return more detailed debugging information, and
default FALSE meaning to return a more user-friendly object of class equalp.test,
which has its own print method

x Object of class equalp.test, the result of equalp.test()

delta Small value for numerical stability

Details

Given a hyper2 likelihood function, there are a number of natural questions to ask about the
strengths of the players; see Hankin 2010 (JSS) for examples. An extended discussion is pre-
sented in vignette “hyper2” and the functions documented here cover most of the tests used in the
vignette.

The tests return an object with class hyper2test, which has its own print method.

• Function equalp.test(H,p) tests the null that all strengths are equal to vector p. If p is
missing, it tests H0 : p1 = p2 = · · · = pn = 1

n , for example equalp.test(icons)

• Function knownp.test() tests the null that the strengths are equal to the elements of named
vector p; it is a generalization of equalp.test(). Example: knownp.test(icons,zipf(6)).

• Function specificp.test(H,i,p) tests H0 : pi = p, for example specificp.test(icons,"NB",0.1)

• Function samep.test() tests H0 : pi1 = pi2 = · · · = pik , for example samep.test(icons,c("NB","L"))
tests that NB has the same strength as L.

• Functions specificp.ne.test(H,i,p), specificp.gt.test(H,i,p), and specificp.lt.test(H,i,p)
are low-level helper functions that implement one- or two-sided versions of specificp.test()
via the alternative argument, following t.test()

Value

The test functions return a list with class "hyper2test" containing the following components:

statistic the difference in support between the null and alternative

p.value the (asymptotic) p-value for the test, based on Wilks’s theorem

estimate the maximum likelihood estimate for p

method a character string indicating what type of test was performed

data.name a character string giving the name(s) of the data.

Note

Function specificp.gt.test() includes quite a bit of messing about to ensure that frequently-
used idiom like specificp.gt.test(icons,"NB",0) works as expected, testing a null of p_NB=0
(observe that specificp.ne.test(icons,"NB",0) and specificp.gt.test(icons,"NB",0) will
(correctly) throw an error). In the case of testing a strength’s being zero, the support function is of-
ten quite badly-behaved near the constraint [think tossing a coin with probability p twice, observing

tidy 97

one head and one tail, and testing p = 0; at the constraint, the likelihood is zero, the support neg-
ative infinity, and the gradient of the support is infinite]. Numerically, the code tests p_NB=delta.
Note that similar machinations are not required in specificp.lt.test() because a null of p_NB=1
is unrealistic.

Function samep.test() does not have access to gradient information so it is slow, inaccurate, and
may fail completely for high-dimensional datasets. If any(i==n), this constrains the fillup value;
this makes no difference mathematically but the function idiom is involved.

In functions specificp.??.test(H,i,...), if i is not present in H, an error is returned although
technically the result should be “not enough evidence to reject”, as H is uninformative about i.

See Also

maxp

Examples

equalp.test(chess)

samep.test(icons,c("NB","L"))
knownp.test(icons,zipf(icons))

tidy Tidy up a hyper2 object

Description

Tidy up a hyper2 object by removing players about which we have no information

Usage

tidy(H)

Arguments

H A hyper2 object

Details

Function tidy(H) returns a hyper2 object mathematically identical to H but with unused players
(that is, players that do not appear in any bracket) removed. Players about which H is uninformative
are removed from the pnames attribute.

Note that idiom pnames(H) <- foo can also be used to manipulate the pnames attribute.

Author(s)

Robin K. S. Hankin

98 universities

Examples

H <- hyper2(pnames=letters)
H["a"] <- 1
H["b"] <- 2
H[c("a","b")] <- -3

pnames(H)
pnames(tidy(H))

H == tidy(H) # should be TRUE

universities New Zealand University ranking data

Description

Times Higher Education World University Rankings

Usage

data(universities)

Format

A hyper2 object that gives a likelihood function for ranking of NZ universities

Details

The data is taken directly from the THE website, specifying “New Zealand”:

https://www.timeshighereducation.com/world-university-rankings/2020/world-ranking#
!/page/0/length/25/locations/NZ/sort_by/rank/sort_order/asc/cols/stats

Object universities is a hyper2 support function and universities_table a data frame.

These objects can be generated by running script inst/universities.Rmd, which includes some
further discussion and technical documentation, and creates file universities.rda which resides
in the data/ directory.

See Also

ordertable

https://www.timeshighereducation.com/world-university-rankings/2020/world-ranking#!/page/0/length/25/locations/NZ/sort_by/rank/sort_order/asc/cols/stats
https://www.timeshighereducation.com/world-university-rankings/2020/world-ranking#!/page/0/length/25/locations/NZ/sort_by/rank/sort_order/asc/cols/stats

volleyball 99

Examples

summary(universities)

psubs(universities,c("AUT","UoA"),c("University of Auckland","Auckland University of Technology"))

pie(universities_maxp)

volleyball Results from the NOCS volleyball league

Description

Results from the NOCS volleyball league. Object volleyball_table is a matrix in which each
column corresponds to a player and each row corresponds to a volleyball set; volleyball is the
corresponding likelihood function in the form of a hyper2 distribution.

Usage

data(volleyball)

Details

A volleyball set is a Bernoulli trial between two disjoint subsets of the players. The two subsets are
denoted (after the game) as the “winners” and the “losers”: these are denoted by 1 and 0 respectively.

Thus the first line reads of volleyball_results reads:

p1 p2 p3 p4 p5 p6 p7 p8 p9
1 0 NA 1 0 0 NA 1 NA

showing that the teams were p1, p4 and p8 against p2, p5 and p6; players p3, p7 and p9 did not
play.

These datasets illustrate the fact that such Bernoulli trials are only weakly informative.

These objects can be generated by running script inst/volleyball.Rmd, which includes some
further discussion and technical documentation and creates file volleyball.rda which resides in
the data/ directory.

The dataset is used in an example at zipf.Rd: the players’ strengths are not Zipf.

Author(s)

Robin K. S. Hankin

Source

Volleyball games at NOCS, 2006-2008

100 volvo

References

Robin K. S. Hankin (2010). “A Generalization of the Dirichlet Distribution”, Journal of Statistical
Software, 33(11), 1-18

See Also

zipf

Examples

volleyball == volley(volleyball_table) # should be TRUE

volvo Race results from the 2014-2015 Volvo Ocean Race

Description

Race results from the twelfth edition of the round-the-world Volvo Ocean Race.

Usage

data(volvo)

Format

A hyper2 object that gives a likelihood function

Details

Object volvo is a hyper2 object that gives a likelihood function for the strengths of the competitors
of the 2014-2015 Volvo Ocean Race; volvo_maxp is a precomputed maximum likelihood estimate
of the competitors’ strengths. Object volvo_table is a data frame with rows being teams and
columns being legs.

These objects can be generated by running script inst/volvo.Rmd, which includes some further
discussion and technical documentation and creates file volvo.rda which resides in the data/
directory.

References

Wikipedia contributors, 2019. “2014-2015 Volvo Ocean Race”. In Wikipedia, the free encyclopedia.
Retrieved 22:21, February 28, 2020. https://en.wikipedia.org/w/index.php?title=2014%
E2%80%932015_Volvo_Ocean_Race&oldid=914916131,

See Also

ordertable2supp

https://en.wikipedia.org/w/index.php?title=2014%E2%80%932015_Volvo_Ocean_Race&oldid=914916131
https://en.wikipedia.org/w/index.php?title=2014%E2%80%932015_Volvo_Ocean_Race&oldid=914916131

zapweak 101

Examples

pie(volvo_maxp)
equalp.test(volvo) # takes ~10 seconds to run

convert table to a support function:
rank_likelihood(wikitable_to_ranktable(volvo_table))

zapweak Zap weak competitors

Description

Given a hyper2 object, discard competitors with a small estimated strength.

Usage

zapweak(H, minstrength = 1e-05, maxit, ...)

Arguments

H Object of class hyper2

minstrength Strength below which to discard competitors

maxit Maximum number of iterations; if missing, use size(H)-1

... Further arguments, passed to maxp()

Details

Iteratively discards the weakest player (if the estimated strength is less than minstrength) using
discard_flawed(). maxp(..,n=1) for efficiency.

Value

Returns a slimmed-down hyper2 object with weak players removed.

Note

This function is experimental and appears to be overly aggressive. For some likelihood functions
zapweak() removes all the players.

I now think that there is no consistent way to remove weaker players from a likelihood function. I
think the only way to do it is to look at the dataset that generates the likelihood function, somehow
weed out the players with the poorest performance, and generate a new likelihood function without
them.

102 zipf

Author(s)

Robin K. S. Hankin

See Also

discard_flawed,maxp

Examples

zapweak(icons) # removes noone
zapweak(rowing) # removes everyone...

zipf Zipf’s law

Description

A very short function that reproduces Zipf’s law: a harmonic rank-probability distribution, formally

p(i) =
i−1∑N
i=1 i

−1
, i = 1, . . . , N

The volleyball dataset might reasonably be assumed to be zipf, but one can reject this hypothesis at
5%, see the examples.

Usage

zipf(n)

Arguments

n Integer; if a hyper2 object is supplied this is interpreted as size(n)

Value

Returns a numeric vector summing to one

Author(s)

Robin K. S. Hankin

See Also

knownp.test

Examples

zipf(icons)
knownp.test(volleyball,zipf(volleyball))

Index

∗ datasets
chess, 12
counterstrike, 15
curling, 17
handover, 30
icons, 37
interzonal, 40
jester, 42
karpov_kasparov_anand, 44
masterchef, 49
NBA, 55
rowing, 81
skating, 87
surfing, 92
T20, 92
table_tennis, 93
tennis, 94
volleyball, 99

∗ package
hyper2-package, 3

∗ symbolmath
Ops.hyper2, 56
Ops.hyper3, 57
suplist, 90

[.hyper2 (Extract), 22
[<-.hyper2 (Extract), 22

accessor (cplusplus), 16
accessor3 (cplusplus), 16
additional_strength (pwa), 76
addL (cplusplus), 16
addL3 (cplusplus), 16
allequal (maxp), 51
allrowers (rowing), 81
args2ordervec (ordervec2supp3), 66
as.hyper2 (hyper2), 33
as.hyper3 (hyper3), 34
as.namedvectorlist (hyper3), 34
as.ordertable, 4, 45, 59
as.suplist (suplist), 90

as.weight (hyper3), 34
assign_lowlevel (Extract), 22
assign_lowlevel3 (hyper3), 34
assigner (cplusplus), 16
assigner3 (cplusplus), 16
attemptstable2supp

(attemptstable2supp3), 5
attemptstable2supp3, 5, 41

B, 6
balance, 8
baseball, 9
baseball_maxp (baseball), 9
baseball_table (baseball), 9
basketball (NBA), 55
black_wins (karpov_kasparov_anand), 44
bordered_hessian (gradient), 28
brackets (hyper2), 33

carcinoma, 10
carcinoma_count (carcinoma), 10
carcinoma_maxp (carcinoma), 10
carcinoma_table (carcinoma), 10
chameleon (pwa), 76
char2num (character_to_number), 11
char2nv (ordervec2supp3), 66
character_to_number, 11
cheering (ordervec2supp3), 66
cheering3 (ordervec2supp3), 66
chess, 12, 40, 44
chess3 (karpov_kasparov_anand), 44
chess3_maxp (karpov_kasparov_anand), 44
chess_maxp (chess), 12
chess_table (chess), 12
choose_losers (ggol), 26
choose_winners (ggol), 26
collusion (interzonal), 40
Connor (dirichlet), 18
consistency, 13
consistencyplot (consistency), 13

103

104 INDEX

constructor, 14, 26
constructor_2020 (constructor), 14
constructor_2020_maxp (constructor), 14
constructor_2020_table (constructor), 14
constructor_2021 (constructor), 14
constructor_2021_maxp (constructor), 14
constructor_2021_table (constructor), 14
constructor_table_2020 (constructor), 14
constructor_table_2021 (constructor), 14
constructors (constructor), 14
counterstrike, 15
counterstrike_likelihood

(counterstrike), 15
counterstrike_maxp (counterstrike), 15
cplusplus, 16
curacao (interzonal), 40
curacao3 (interzonal), 40
Curling (curling), 17
curling, 17
curling1 (curling), 17
curling1_maxp (curling), 17
curling2 (curling), 17
curling2_maxp (curling), 17
curling_maxp (curling), 17
curling_table (curling), 17

dec (increment), 38
decrement (increment), 38
den3 (ordervec2supp3), 66
dhyper2 (B), 6
dhyper2_e (B), 6
differentiate (cplusplus), 16
differentiate3 (cplusplus), 16
differentiate_n (cplusplus), 16
Dirichlet (dirichlet), 18
dirichlet, 18, 83
dirichlet3 (dirichlet), 18
discard (keep), 45
discard_flawed, 102
discard_flawed (keep), 45
discard_flawed2 (keep), 45
doubles (tennis), 94
doubles_ghost (tennis), 94
doubles_noghost (tennis), 94
drawn_games (karpov_kasparov_anand), 44
drop (keep), 45
drop_flawed (keep), 45

e_to_p (B), 6

elimination (ggol), 26
equal (cplusplus), 16
equality (cplusplus), 16
equality3 (cplusplus), 16
equalp, 24
equalp (maxp), 51
equalp.test (tests), 95
equalprobs (maxp), 51
euro (eurovision), 21
euro2009 (eurovision), 21
Eurodance (eurodance), 20
eurodance, 20, 20, 21
eurodance_maxp (eurodance), 20
eurodance_table (eurodance), 20
Eurovision (eurovision), 21
eurovision, 21
Eurovision2009 (eurovision), 21
eurovision2009 (eurovision), 21
eurovision2009_votingtable

(eurovision), 21
eurovision_maxp (eurovision), 21
Eurovision_song_contest (eurovision), 21
eurovision_table (eurovision), 21
evaluate (cplusplus), 16
evaluate3 (cplusplus), 16
extra_strength (pwa), 76
Extract, 22, 91
extract (Extract), 22
Extract.hyper2, 34
Extract.hyper2 (Extract), 22
extractor (Extract), 22

F1 (formula1), 25
F1_2014 (formula1), 25
F1_2015 (formula1), 25
F1_2016 (formula1), 25
F1_2017 (formula1), 25
F1_2018 (formula1), 25
F1_2019 (formula1), 25
F1_points_2017 (formula1), 25
F1_table_2016 (formula1), 25
F1_table_2017 (formula1), 25
F1_table_2018 (formula1), 25
F1_table_2019 (formula1), 25
fillup, 24, 53
formula1, 15, 25
formula1_2017_table (formula1), 25
formula1_points_2017 (formula1), 25
formula1_points_systems (formula1), 25

INDEX 105

formula1_table_2017 (formula1), 25
formula_1 (formula1), 25
formula_one (formula1), 25

GD (dirichlet), 18
gd (dirichlet), 18
GD_wong (dirichlet), 18
general_grouped_order_likelihood

(ggol), 26
general_grouped_rank_likelihood (ggol),

26
ggol, 26
ggrl, 49, 54, 82
ggrl (ggol), 26
give_warning_on_nonzero_power_sum

(Print), 73
goodbad (ggol), 26
gradient, 24, 28, 53
gradientn (gradient), 28

handoff (handover), 30
handover, 30
handover_maxp (handover), 30
handover_table (handover), 30
head.hyper2, 31
hepatitis, 11, 32, 32
hepatitis_count (hepatitis), 32
hepatitis_maxp (hepatitis), 32
hepatitis_table (hepatitis), 32
hessian (gradient), 28
hessian_bordered (gradient), 28
hessian_lowlevel (gradient), 28
home_away (pairwise), 68
home_away3 (pairwise), 68
humor (jester), 42
humour (jester), 42
hyper2, 19, 23, 33, 36, 84, 89
hyper2-package, 3
hyper2_accessor (cplusplus), 16
hyper2_add (Ops.hyper2), 56
hyper2_addL (cplusplus), 16
hyper2_assigner (cplusplus), 16
hyper2_differentiate (cplusplus), 16
hyper2_equal (cplusplus), 16
hyper2_evaluate (cplusplus), 16
hyper2_identityL (cplusplus), 16
hyper2_overwrite (cplusplus), 16
hyper2_prod (Ops.hyper2), 56
hyper2_sum_numeric (Ops.hyper2), 56

hyper3, 10, 34
hyper3_add (Ops.hyper3), 57
hyper3_bw (hyper3), 34
hyper3_equal (Ops.hyper3), 57
hyper3_m (hyper3), 34
hyper3_nv (hyper3), 34
hyper3_prod (Ops.hyper3), 57
hyper3_sum_numeric (Ops.hyper3), 57
hyper3_to_hyper2 (hyper3), 34

icons, 37, 50
icons_matrix (icons), 37
icons_maxp (icons), 37
icons_table (icons), 37
identityL (cplusplus), 16
identityL3 (cplusplus), 16
inc (increment), 38
increment, 38
indep (fillup), 24
interzonal, 40
interzonal_collusion (interzonal), 40
interzonal_collusion_maxp (interzonal),

40
interzonal_maxp (interzonal), 40
interzonal_table (interzonal), 40
is.dirichlet (dirichlet), 18
is.hyper2 (hyper2), 33
is.hyper3 (hyper3), 34
is_constant (hyper2), 33
is_ok_hessian (gradient), 28
is_ok_weightedplayers (hyper3), 34
is_valid_hyper2 (hyper2), 33
is_valid_hyper3 (hyper3), 34

Jacobian (B), 6
javelin, 6, 41
javelin1 (javelin), 41
javelin1_maxp (javelin), 41
javelin2 (javelin), 41
javelin2_maxp (javelin), 41
javelin_maxp (javelin), 41
javelin_table (javelin), 41
javelin_vector (javelin), 41
jester, 42
jester_maxp (jester), 42
jester_table (jester), 42
jokes (jester), 42

karate, 43

106 INDEX

karate_maxp (karate), 43
karate_table (karate), 43
karate_zermelo (karate), 43
karpov_kasparov_anand, 13, 40, 44
keep, 45
keep_flawed (keep), 45
keep_flawed2 (keep), 45
kka (karpov_kasparov_anand), 44
kka_3draws (karpov_kasparov_anand), 44
kka_3whites (karpov_kasparov_anand), 44
kka_array (karpov_kasparov_anand), 44
knownp.test, 102
knownp.test (tests), 95

length (length.hyper2), 46
length.hyper2, 46
like_series (loglik), 47
like_single_list (loglik), 47
list2nv (hyper3), 34
loglik, 8, 34, 47, 74, 83, 91
loglik_lsl (suplist), 90
loglik_single (loglik), 47
loglik_single_redundant (hyper3), 34
lsl (suplist), 90
lsl_add (suplist), 90

malpractice (handover), 30
MasterChef (masterchef), 49
masterchef, 49
masterchef_constrained_maxp

(masterchef), 49
masterchef_maxp (masterchef), 49
matrix2supp, 38, 50
matrix_to_HD (matrix2supp), 50
maxjest (jester), 42
maxp, 29, 48, 51, 70, 83, 97, 102
maxp3 (hyper3), 34
maxp_lsl (maxp), 51
maxp_simplex (maxp), 51
maxp_single (maxp), 51
maxp_single2 (maxp), 51
maxplist (maxp), 51
mean (B), 6
mean_hyper2 (B), 6
mgf (B), 6
Mosimann (dirichlet), 18
moto, 53
moto_maxp (moto), 53
moto_table (moto), 53

motoGP (moto), 53
motoGP_2019 (moto), 53
mult_grid, 54

NBA, 55
NBA_likelihood (NBA), 55
NBA_maxp (NBA), 55
NBA_table (NBA), 55
nonzero_power_sum (Print), 73
num3 (ordervec2supp3), 66

oneill (icons), 37
Ops (Ops.hyper2), 56
Ops.hyper2, 23, 34, 56, 91
Ops.hyper3, 57
Ops.lsl (suplist), 90
Ops.suplist (suplist), 90
order_obs (ordertable2supp), 61
order_table (ordertable), 58
ordertable, 5, 58, 60, 62, 71, 98
ordertable2points, 60
ordertable2supp, 5, 6, 26, 28, 46, 54, 59, 61,

67, 72, 78, 81, 89, 100
ordertable2supp3, 62
ordertable2supp3 (ordervec2supp3), 66
ordertable_to_ranktable (ranktable), 77
ordertrans, 14, 63, 67, 81, 86
ordertransplot (ordertrans), 63
ordervec2supp, 77
ordervec2supp (ordertable2supp), 61
ordervec2supp3, 66
ordervec2supp3a (ordervec2supp3), 66
overwrite (cplusplus), 16
overwrite3 (cplusplus), 16
overwrite_lowlevel (Extract), 22
overwrite_lowlevel3 (hyper3), 34

p_to_e (B), 6
pair_grid (mult_grid), 54
pairwise, 68
pentathlon, 71
pentathlon_maxp (pentathlon), 71
pentathlon_ordertable (pentathlon), 71
pentathlon_table (pentathlon), 71
ping_pong (table_tennis), 93
Plackett (ggol), 26
Plackett-Luce (ggol), 26
plays_white_draws

(karpov_kasparov_anand), 44

INDEX 107

plays_white_loses
(karpov_kasparov_anand), 44

plays_white_wins
(karpov_kasparov_anand), 44

pnames (hyper2), 33
pnames<- (hyper2), 33
pnames<-.hyper3 (hyper3), 34
pnv (Print), 73
power_sum (Print), 73
powerboat, 72
powerboat2018 (powerboat), 72
powerboat_2018 (powerboat), 72
powerboat_maxp (powerboat), 72
powerboat_table (powerboat), 72
powers (hyper2), 33
powers<- (hyper2), 33
powers<-.hyper3 (hyper3), 34
Print, 73
print (Print), 73
print.equalptest (tests), 95
print.hyper2, 9
print.hyper2test (tests), 95
print.ranktable (rrank), 84
print.ranktablesummary (ranktable), 77
print.summary.hyper2 (summary.hyper2),

89
probability (B), 6
profile, 74
profile_likelihood (profile), 74
profile_likelihood_single (profile), 74
profile_support (profile), 74
profile_support_single (profile), 74
proflike (profile), 74
profsup (profile), 74
profsupp (profile), 74
psubs, 34, 75
psubs_names (psubs), 75
psubs_pnames (psubs), 75
psubs_single (psubs), 75
pwa, 76

race (ggol), 26
race3, 11, 28, 32
race3 (ordervec2supp3), 66
race_to_hyper3 (ordervec2supp3), 66
rank_likelihood, 11, 86
rank_likelihood (ggol), 26
ranktable, 59, 77
ranktable_to_ordertable (ranktable), 77

ranktable_to_printable_object
(ranktable), 77

rankvec_likelihood (ggol), 26
rankvec_likelihood3 (ordervec2supp3), 66
rdirichlet (dirichlet), 18
retain (keep), 45
retain_flawed (keep), 45
rhyper2, 79, 83
rhyper3, 80, 86
rock_paper_scissors (chess), 12
rorder_single (rrank), 84
rowing, 81
rowing_maxp (rowing), 81
rowing_minimal (rowing), 81
rowing_minimal_maxp (rowing), 81
rowing_minimal_table (rowing), 81
rowing_table (rowing), 81
rp, 19, 79, 82
rp_unif (dirichlet), 18
rpair3 (rhyper3), 80
rrace, 79, 83
rrace3, 84
rrace3 (rhyper3), 80
rracehyper3 (rhyper3), 80
rrank, 28, 58, 59, 65, 78, 81, 84
rrank_single (rrank), 84
rwinner3 (rhyper3), 80

saffy (matrix2supp), 50
salad, 62
salad (ordertable2supp), 61
samep.test (tests), 95
sculling (rowing), 81
sculls2016 (rowing), 81
setweight (hyper3), 34
size (hyper2), 33
skating, 86, 87
skating_maxp (skating), 87
skating_table (skating), 87
skeleton (skating), 87
soling, 88
soling2000 (soling), 88
soling2000_qf (soling), 88
soling2000_rr1 (soling), 88
soling2000_rr2 (soling), 88
soling_after (soling), 88
soling_after_maxp (soling), 88
soling_maxp (soling), 88
soling_qf (soling), 88

108 INDEX

soling_rr1 (soling), 88
soling_rr2 (soling), 88
soling_table (soling), 88
soling_table_2000 (soling), 88
specificp.ge.test (tests), 95
specificp.gt.test (tests), 95
specificp.le.test (tests), 95
specificp.lt.test (tests), 95
specificp.ne.test (tests), 95
specificp.test (tests), 95
stockholm1962 (interzonal), 40
sum.hyper2 (Ops.hyper2), 56
sum.hyper3 (Ops.hyper3), 57
sum.suplist (suplist), 90
summary.hyper2, 89
summary.ranktable (ranktable), 77
suplist, 90
suplist_add (suplist), 90
suplist_times_scalar (suplist), 90
supplist (suplist), 90
surfing, 92
surfing_maxp (surfing), 92
surfing_table (surfing), 92
surfing_venuetypes (surfing), 92

T20, 92
T20_maxp (T20), 92
T20_table (T20), 92
T20_toss (T20), 92
T20_toss_maxp (T20), 92
table_tennis, 93
table_tennis_serve (table_tennis), 93
tennis, 94
tennis_ghost (tennis), 94
tennis_ghost_maxp (tennis), 94
tennis_maxp (tennis), 94
tennis_noghost (tennis), 94
tests, 95
tidy, 46, 97
training_strength (pwa), 76
trial (increment), 38

universities, 98
universities_maxp (universities), 98
universities_table (universities), 98

vb (volleyball), 99
vb_synthetic (volleyball), 99
volley (matrix2supp), 50

volleyball, 50, 55, 99
volleyball_matrix (volleyball), 99
volleyball_maxp (volleyball), 99
volleyball_results (volleyball), 99
volleyball_table (volleyball), 99
volvo, 59, 100
volvo2014 (volvo), 100
volvo_maxp (volvo), 100
volvo_ocean_race (volvo), 100
volvo_table (volvo), 100
volvo_table_2014 (volvo), 100

weights (hyper3), 34
wet_strength (pwa), 76
white_draw (pairwise), 68
white_draw3 (pairwise), 68
white_strength (pwa), 76
white_wins (karpov_kasparov_anand), 44
wikitable_to_ranktable (ranktable), 77

zacslist (counterstrike), 15
zapweak, 43, 101
zermelo (pairwise), 68
zipf, 100, 102

	hyper2-package
	as.ordertable
	attemptstable2supp3
	B
	balance
	baseball
	carcinoma
	character_to_number
	chess
	consistency
	constructor
	counterstrike
	cplusplus
	curling
	dirichlet
	eurodance
	eurovision
	Extract
	fillup
	formula1
	ggol
	gradient
	handover
	head.hyper2
	hepatitis
	hyper2
	hyper3
	icons
	increment
	interzonal
	javelin
	jester
	karate
	karpov_kasparov_anand
	keep
	length.hyper2
	loglik
	masterchef
	matrix2supp
	maxp
	moto
	mult_grid
	NBA
	Ops.hyper2
	Ops.hyper3
	ordertable
	ordertable2points
	ordertable2supp
	ordertrans
	ordervec2supp3
	pairwise
	pentathlon
	powerboat
	Print
	profile
	psubs
	pwa
	ranktable
	rhyper2
	rhyper3
	rowing
	rp
	rrace
	rrank
	skating
	soling
	summary.hyper2
	suplist
	surfing
	T20
	table_tennis
	tennis
	tests
	tidy
	universities
	volleyball
	volvo
	zapweak
	zipf
	Index

