
Package: evitaicossa (via r-universe)
September 10, 2024

Type Package

Title Antiassociative Algebra

Version 0.0-2

Maintainer Robin K. S. Hankin <hankin.robin@gmail.com>

Description Methods to deal with the free antiassociative algebra over
the reals with an arbitrary number of indeterminates.
Antiassociativity means that (xy)z = -x(yz). Antiassociative
algebras are nilpotent with nilindex four (Remm, 2022,
<doi:10.48550/arXiv.2202.10812>) and this drives the design and
philosophy of the package. Methods are defined to create and
manipulate arbitrary elements of the antiassociative algebra,
and to extract and replace coefficients. A vignette is
provided.

License GPL (>= 2)

Depends R (>= 3.5.0)

Suggests knitr, markdown, rmarkdown, testthat, mvtnorm, covr

VignetteBuilder knitr

Imports Rcpp (>= 1.0-7), disordR (>= 0.9-8-2), methods, Rdpack

LinkingTo Rcpp

URL https://github.com/RobinHankin/evitaicossa,

https://robinhankin.github.io/evitaicossa/

BugReports https://github.com/RobinHankin/evitaicossa/issues

RdMacros Rdpack

Config/testthat/edition 3

Repository https://robinhankin.r-universe.dev

RemoteUrl https://github.com/robinhankin/evitaicossa

RemoteRef HEAD

RemoteSha 0e63063039f11a4e6561a5e6da725680bf84cf74

1

https://doi.org/10.48550/arXiv.2202.10812
https://github.com/RobinHankin/evitaicossa
https://robinhankin.github.io/evitaicossa/
https://github.com/RobinHankin/evitaicossa/issues

2 evitaicossa-package

Contents
evitaicossa-package . 2
aaa . 3
aaa-class . 4
allsymbols . 5
Arith-methods . 6
Compare-methods . 6
Extract . 7
linear . 9
raaa . 10
show . 11
zero . 12

Index 13

evitaicossa-package Antiassociative Algebra

Description

Methods to deal with the free antiassociative algebra over the reals with an arbitrary number of
indeterminates. Antiassociativity means that (xy)z = -x(yz). Antiassociative algebras are nilpotent
with nilindex four (Remm, 2022, <doi:10.48550/arXiv.2202.10812>) and this drives the design and
philosophy of the package. Methods are defined to create and manipulate arbitrary elements of the
antiassociative algebra, and to extract and replace coefficients. A vignette is provided.

Details

The DESCRIPTION file: This package was not yet installed at build time.

Index: This package was not yet installed at build time.

Functionality to work with the free antiassociative algebra in R. The hex sticker features an im-
age taken from Hoffnung (1959) in which musical concepts [pizzicato, crescendo, etc] are given
whimsical visual form. The character on the hex sticker is captioned “A Discord”: Hoffnung’s in-
terpretation of the musical concept of dissonance. In the book, the preceding image was a “chord”,
evoking harmony. The discord, on the other hand, embodies–for me at least–antiassociativity: ev-
erything is wrong, wrong, wrong.

Author(s)

Robin K. S. Hankin [aut, cre] (<https://orcid.org/0000-0001-5982-0415>)

Maintainer: Robin K. S. Hankin <hankin.robin@gmail.com>

References

Hoffnung G (1959). Hoffnung’s Acoustics. Dobson.

aaa 3

See Also

aaa

Examples

x <- raaa()
x
y <- raaa()

x+y
x*y

aaa Function to create objects of class aaa

Description

Objects of class aaa

Usage

aaa(s1 = character(0), sc = numeric(0), d1 = character(0), d2 =
character(0), dc = numeric(0), t1 = character(0), t2 = character(0), t3
= character(0), tc = numeric(0))
lavter(cout)
as.aaa(s)
thing_to_aaa(L)

Arguments

s1, d1, d2, t1, t2, t3
single, double, triple symbols

sc, dc, tc single, double, triple coefficients
L A list with elements s1 etc
cout list
s Object that function as.aaa() will coerce to an aaa object

Details

Function lavter() is the formal creation method for aaa objects; it is the only place that new() is
called. It takes a single argument cout, which is a list as returned by C function retval(). But
it is a little awkward to use and the user should use other functions for creation, which are more
user-friendly and have sensible defaults:

• Function aaa() takes named arguments s1 etc, with defaults corresponding to “not present”
• Function thing_to_aaa() takes a list with names s1 etc
• Function as.aaa() tries hard to coerce its argument to an aaa object

4 aaa-class

Value

Return objects of class aaa

Author(s)

Robin K. S. Hankin

Examples

aaa(s1 = "x", sc = 13)
aaa(d1 = "z", d2 = "w", dc = 14)
aaa(t1 = "x", t2 = "y", t3 = "z", tc = 15)

aaa(
s1 = c("a","d"),
sc = c(4 , 2),
d1 = c("a", "a", "a", "b"),
d2 = c("a", "b", "d", "a"),
dc = c(3 , 4 , 4 , 3),
t1 = c("a", "a", "a", "b", "b"),
t2 = c("c", "d", "d", "c", "c"),
t3 = c("a", "c", "d", "a", "b"),
tc = c(-4 , -1 , -4 , 11 , 20)

)

aaa() # the zero object

aaa(s1=letters,sc=seq_along(letters))
aaa(d1=state.abb,d2=rev(state.abb),dc=seq_along(state.abb))

as.aaa(state.abb)

evita <- aaa(s1=letters[1:5],sc=1:5)
icossa <- aaa(d1=c("fish","chips"),d2=c("x","y"),dc=c(6,7))

evita
evita + icossa
evita * icossa
evita^2

f <- function(o){aaa(state.abb[o],seq_along(o))}
f(8:9) - (f(1:2) - f(6:8)^2)^2

aaa-class Class "aaa"

allsymbols 5

Description

Class aaa is for elements of the free antiassociative algebra

Objects from the Class

Objects can be created by calls of the form new("aaa", ...).

Slots

single_indeterminate_name1: Object of class "character"

single_indeterminate_coeff: Object of class "numeric"

double_indeterminate_name1: Object of class "character"

double_indeterminate_name2: Object of class "character"

double_indeterminate_coeff: Object of class "numeric"

triple_indeterminate_name1: Object of class "character"

triple_indeterminate_name2: Object of class "character"

triple_indeterminate_name3: Object of class "character"

triple_indeterminate_coeff: Object of class "numeric"

Author(s)

Robin K. S. Hankin

Examples

showClass("aaa")

allsymbols All symbols in an aaa object

Description

Function allsymbols() returns a character vector whose entries include all symbols of its argu-
ment.

Usage

allsymbols(a)

Arguments

a Object of class aaa

Value

Returns a character vector

6 Compare-methods

Author(s)

Robin K. S. Hankin

Examples

a <- raaaa()
a
allsymbols(a)

a[cbind(allsymbols(a))] == single(a)

Arith-methods Arithmetic methods for aaa objects

Description

Arithmetic methods for objects of class aaa.

Methods

signature(e1 = "aaa", e2 = "aaa") Dispatches to aaa_arith_aaa()

signature(e1 = "aaa", e2 = "numeric") Dispatches to aaa_arith_numeric()

signature(e1 = "numeric", e2 = "aaa") Dispatches to numeric_arith_aaa()

The S4 methods call lower-level functions aaa_plus_aaa(), aaa_prod_aaa(), aaa_prod_numeric(),
aaa_negative(), and aaa_plus_numeric().

These functions call the Rcpp functions aaa_identity(), c_aaa_add(), and c_aaa_prod().

Compare-methods Comparison methods for antiassociative algebra

Description

Comparison methods generally do not make sense for elements of an antiassociative algebra. The
only exception is equality: x == y returns TRUE if aaa objects x and y are identical.

The test for equality follows the frab package: go through the keys of x, compare the corresponding
values of y, and return FALSE when any difference is detected. This is faster than is.zero(x-y).

Technically, x==0 makes sense but I thought consistency was more important: in the package,
numeric values cannot be compared with aaa objects.

Functions aaa_compare_aaa() etc. are used in S4 dispatch; c_aaa_equal() is a low-level helper
function that uses Rcpp to call the appropriate C routine.

https://CRAN.R-project.org/package=frab

Extract 7

Methods

signature(e1 = "aaa", e2 = "aaa")

signature(e1 = "aaa", e2 = "ANY")

signature(e1 = "aaa", e2 = "numeric")

signature(e1 = "ANY", e2 = "aaa")

signature(e1 = "numeric", e2 = "aaa")

Extract Extract or Replace Parts of aaa objects

Description

Extraction methods for aaa objects. The names of the two-letter functions and arguments follow
a pattern: the initial letter (s, d, t) stands for “single”, “double”, or “triple”; the second symbol is
c for “coefficients”, or a number (1, 2, 3) denoting first, second, or third. Thus “dc()” gets the
coefficients of the double-symbol components, and “t2()” gets the second symbol of the triple-
symbol components.

Usage

S4 method for signature 'aaa'
s1(a)
S4 method for signature 'aaa'
sc(a)
S4 method for signature 'aaa'
d1(a)
S4 method for signature 'aaa'
d2(a)
S4 method for signature 'aaa'
dc(a)
S4 method for signature 'aaa'
t1(a)
S4 method for signature 'aaa'
t2(a)
S4 method for signature 'aaa'
t3(a)
S4 method for signature 'aaa'
tc(a)
single(a)
double(a)
triple(a)

Arguments

a Object of class aaa

8 Extract

Details

An aaa object is a list of 9 vectors, three numeric and six character, which are extracted by functions
s1() etc.

Functions single(), double() and triple() extract the single, double, and triple components of
their argument, and return the corresponding aaa object.

There is no function evitaicossa::coeffs() because the three types of elements are qualitatively
different; use sc(), dc(), and tc() to get the coefficients in disord format.

Functions getthings(), extracter() and overwriter() are lower-level methods, not really in-
tended for the end-user. Function getthings() takes an aaa object and returns a named list with
elements being disord objects corresponding to components s1,sc,d1 etc. Function extracter()
takes an aaa object and arguments s1, d1,d2,t1 etc. and returns the aaa object corresponding to the
specified index elements. Function overwriter takes

Functions single(), double(), and triple() return the index-1, index-2, and index-3 compo-
nents of their arguments respectively. Functions single<-() et seq. are the corresponding setting
methods which overwrite the index-1 (resp. 2,3) components with the right hand side. The right
hand side must be purely the correct component otherwise an error is returned; thus in double(a)
<- x, for example, the single-symbol and triple-symbol components of x must be zero.

Square bracket extraction and replacement methods are more user-friendly. These operate in two
distinct modes. If given named arguments (s1, d1,d2, et seq.) then these are interpreted as symbols
and coefficients of the different orders. If given an unnamed argument, this is interpreted as a
character vector of length one, two, or three specifying a particular term in the object. See examples.

Value

Return disord or aaa objects

Author(s)

Robin K. S. Hankin

Examples

x <- linear1(1:3) + (linear1(1:2) + linear2(1:3))^2
x
x[d1=c("a","a"),d2=c("a","b")]
x[s1="a", t1="b", t2="c", t3="c"]

x[s1="a", t1="b", t2="c", t3="c"] <- 88
x
x[c("c","c","b")] <- -777
x

a <- raaaa()
sc(a)
t2(a)
single(a)

linear 9

single(a) + double(a) + triple(a) == a # should be TRUE

aaa(d1=d1(a),d2=d2(a), dc=dc(a)) == double(a)

x <- raaaa()
single(x) <- 0
double(x) <- double(raaa())

linear Linear functions

Description

Linear functions returning single, double, or triple-symbol aaa objects.

Usage

linear1(x)
linear2(x)
linear3(x)

Arguments

x A numeric vector

Details

These functions return an antiassociative algebra element with the specified coefficients. Given a
numeric vector v with elements v1, v2, . . . , vn then

linear1(v) returns v1a+ v2b+ · · ·+ vnLn, where Ln is the nth letter of the alphabet. Similarly,
linear2(v) returns v1aa+ · · ·+vnLnLn, and linear3(v) returns v1(aa)a+ · · ·+vn(LnLn)Ln.
They are linear in the sense that

f(αx+ βy) = αf(x) + βf(y)

where α, β ∈ R and x,y ∈ Rn.

Value

These functions return an object of class aaa.

Author(s)

Robin K. S. Hankin

10 raaa

Examples

linear1(sample(8))
linear2(sample(8))
linear3(sample(8))

a <- 3
b <- 7
x <- sample(9)
y <- sample(9)

linear1(a*x + b*y) == a*linear1(x) + b*linear1(y)
linear2(a*x + b*y) == a*linear2(x) + b*linear2(y)
linear3(a*x + b*y) == a*linear3(x) + b*linear3(y)

raaa Random elements of the free antiassociative algebra

Description

Random elements of the free antiassociative algebra, intended as quick “get you going” examples
of aaa objects

Usage

raaa(n = 4, s = 3)
raaaa(n = 10, s = 30)

Arguments

n Number of terms to generate
s Number of symbols to use in the alphabet

Details

Function raaa() returns a random aaa object. Function raaaa() returns, by default, a more com-
plicated aaa object.

Value

Returns an object of class aaa

Author(s)

Robin K. S. Hankin

Examples

raaa()
raaaa()

show 11

show Print method for antiassociative algebra objects

Description

Show methods for aaa objects

Usage

S4 method for signature 'aaa'
show(object)
aaa_show(a)

Arguments

a, object Object of class aaa

Details

A bunch of functionality to print aaa objects.

Function putsign() is a low-level helper function that puts the sign (that is, + or -) before each ele-
ment of a numeric vector. Functions single_string(), double_string(), and triple_string()
process the 1,2, and 3- symbols for printing.

Value

No return value, called for side-effects

Author(s)

Robin K. S. Hankin

Examples

aaa_show(raaa())
aaa_show(aaa())

12 zero

zero The additive zero in antiassociative algebras

Description

Function is.zero() tests for its argument being the additive zero.

Package idiom to create the zero element of the antiassociative algebra is aaa().

Usage

is.zero(x)

Arguments

x Object of class aaa

Value

Returns a Boolean.

Note

In any antiassociative algebra, the only scalar is zero.

Author(s)

Robin K. S. Hankin

Examples

is.zero(raaa())
is.zero(raaa()*0)
is.zero(aaa())

Index

∗ classes
aaa-class, 4

∗ methods
Arith-methods, 6

∗ package
evitaicossa-package, 2

+,aaa,missing-method (Arith-methods), 6
-,aaa,missing-method (Arith-methods), 6
[,aaa,ANY,ANY,ANY-method (Extract), 7
[,aaa,character,ANY,ANY-method

(Extract), 7
[,aaa,matrix,ANY,ANY-method (Extract), 7
[<-,aaa,ANY,ANY,ANY-method (Extract), 7
[<-,aaa,character,missing,numeric-method

(Extract), 7
[<-,aaa,disord,missing,numeric-method

(Extract), 7
[<-,aaa,matrix,ANY,ANY-method

(Extract), 7
[<-,aaa,missing,ANY,ANY-method

(Extract), 7

aaa, 3, 3
aaa-class, 4
aaa_arith_aaa (Arith-methods), 6
aaa_arith_numeric (Arith-methods), 6
aaa_compare_aaa (Compare-methods), 6
aaa_compare_error (Compare-methods), 6
aaa_double (aaa), 3
aaa_equal_aaa (Compare-methods), 6
aaa_identity (aaa), 3
aaa_negative (Arith-methods), 6
aaa_plus_aaa (Arith-methods), 6
aaa_plus_numeric (Arith-methods), 6
aaa_power_numeric (Arith-methods), 6
aaa_prod_aaa (Arith-methods), 6
aaa_prod_numeric (Arith-methods), 6
aaa_show (show), 11
aaa_single (aaa), 3
aaa_triple (aaa), 3

allsymbols, 5
Arith,aaa,aaa-method (Arith-methods), 6
Arith,aaa,numeric-method

(Arith-methods), 6
Arith,numeric,aaa-method

(Arith-methods), 6
Arith-methods, 6
as.aaa (aaa), 3

c_aaa_add (Arith-methods), 6
c_aaa_equal (Compare-methods), 6
c_aaa_extract (Extract), 7
c_aaa_overwriter (Extract), 7
c_aaa_prod (Arith-methods), 6
coeffs (Extract), 7
Compare,aaa,aaa-method

(Compare-methods), 6
Compare,aaa,ANY-method

(Compare-methods), 6
Compare,aaa,numeric-method

(Compare-methods), 6
Compare,ANY,aaa-method

(Compare-methods), 6
Compare,numeric,aaa-method

(Compare-methods), 6
Compare-methods, 6

d1 (Extract), 7
d1,aaa-method (Extract), 7
d2 (Extract), 7
d2,aaa-method (Extract), 7
dc (Extract), 7
dc,aaa-method (Extract), 7
double (Extract), 7
double<- (Extract), 7
double_string (show), 11

evitaicossa (evitaicossa-package), 2
evitaicossa-package, 2
Extract, 7

13

14 INDEX

extracter (Extract), 7
extracter<- (Extract), 7

getthings (Extract), 7

is.zero (zero), 12

lavter (aaa), 3
linear, 9
linear1 (linear), 9
linear2 (linear), 9
linear3 (linear), 9

numeric_arith_aaa (Arith-methods), 6

overwriter (Extract), 7

print (show), 11
putsign (show), 11

raaa, 10
raaaa (raaa), 10

s1 (Extract), 7
s1,aaa-method (Extract), 7
sc (Extract), 7
sc,aaa-method (Extract), 7
show, 11
show,aaa-method (show), 11
single (Extract), 7
single<- (Extract), 7
single_string (show), 11

t1 (Extract), 7
t1,aaa-method (Extract), 7
t2 (Extract), 7
t2,aaa-method (Extract), 7
t3 (Extract), 7
t3,aaa-method (Extract), 7
tc (Extract), 7
tc,aaa-method (Extract), 7
thing_to_aaa (aaa), 3
triple (Extract), 7
triple<- (Extract), 7
triple_string (show), 11

zero, 12

	evitaicossa-package
	aaa
	aaa-class
	allsymbols
	Arith-methods
	Compare-methods
	Extract
	linear
	raaa
	show
	zero
	Index

