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Abstract

Here I introduce cmvnorm, a complex generalization of the mvtnorm package. A com-
plex generalization of the Gaussian process is suggested and numerical results presented
using the package. An application in the context of approximating the Weierstrass sigma
function using a complex Gaussian process is given. To cite the package in publications,
please use Hankin (2015).
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1. Introduction
Complex-valued random variables find applications in many areas of science such as signal
processing (Kay 1989), radio engineering (Ozarow 1994), and atmospheric physics (Mandic,
Javidi, Goh, Kuh, and Aihara 2009). In this short paper I introduce cmvnorm, a pack-
age for investigating one commonly encountered complex-valued probability distribution, the
complex Gaussian.
The real multivariate Gaussian distribution is well supported in R (R Core Team 2014; Genz,
Bretz, Miwa, Mi, Leisch, Scheipl, and Hothorn 2014), having density function

f(x; µ, Σ) = e− 1
2 (x−µ)T Σ−1(x−µ)√

|2πΣ|
x ∈ Rn, (1)

where |M | denotes the determinant of matrix M . Here, µ = E[X] ∈ Rn is the mean vector
and Σ = E

[
(X − µ) (X − µ)T

]
the covariance of random vector X; we write X ∼ Nn(µ, Σ).

One natural generalization would be to consider Z ∼ N Cn(µ, Γ), the complex multivariate
Gaussian, with density function

f(z; µ, Γ) = e−(z−µ)∗Γ−1(z−µ)

|πΓ|
z ∈ Cn (2)
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where z∗ denotes the Hermitian transpose of complex vector z. Now µ ∈ Cn is the complex
mean and Γ = E[(Z − µ) (Z − µ)∗] is the complex variance; Γ is a Hermitian positive definite
matrix. Note the simpler form of (2), essentially due to Gauss’s integral operating more
cleanly over the complex plane than the real line:

∫
C

e−z∗z dz =
∫

x∈R

∫
y∈R

e−(x2+y2) dx dy =
∫ 2π

θ=0

∫ ∞

r=0
e−r2

r dr dθ = π.

A zero mean complex random vector Z is said to be circularly symmetric (Goodman 1963)
if E

[
ZZT

]
= 0, or equivalently Z and eiαZ have identical distributions for any α ∈ R.

Equation (2) clearly has this property.
Most results from real multivariate analysis have a direct generalization to the complex case,
as long as “transpose” is replaced by “Hermitian transpose”. For example, X ∼ Nn(0, Σ)
implies BX ∼ Nn

(
0, BT ΣB

)
for any constant matrix B ∈ Rm×n, and analogously Z ∼

N Cn(0, Γ) implies BZ ∼ N Cn(0, B∗ΓB), B ∈ Cm×n. Similar generalizations operate for
Schur complement methods on partitioned matrices.
Also, linear regression generalizes similarly. Specifically, consider y ∈ Rn. If y = Xβ +
ϵ where X is a n × p design matrix, β ∈ Rp a vector of regression coefficients and ϵ ∼
Nn(0, Σ) is a vector of errors, then β̂ =

(
XT Σ−1X

)−1
XT Σ−1y is the maximum likelihood

estimator for β. The complex generalization is to write z = Zβ + ϵ, Z ∈ Cn×p, β ∈ Cp,
ϵ ∼ N Cn(0, Γ) which gives β̂ =

(
Z∗Γ−1Z

)−1
Z∗Γ−1z. Such considerations suggest a natural

complex generalization of the Gaussian process.
This short vignette introduces the cmvnorm package which furnishes some functionality for
the complex multivariate Gaussian distribution, and applies it in the context of a complex
generalization of the emulator package (Hankin 2005), which implements functionality for
investigating (real) Gaussian processes.

2. The package in use
Random complex vectors are generated using the rcmvnorm() function, analogous to rmvnorm():

> set.seed(1)
> library("cmvnorm",quietly=TRUE)
> cm <- c(1,1i)
> cv <- matrix(c(2,1i,-1i,2),2,2)
> (z <- rcmvnorm(6, mean=cm, sigma=cv))

[,1] [,2]
[1,] 0.9680986+0.5525419i 0.01659694+2.9770976i
[2,] 0.2044744-1.4994889i 1.83207647+0.8271259i
[3,] 1.0739973+0.2279914i -0.79670195+0.1736071i
[4,] 1.3171073-0.9843313i 0.92571459+0.5524913i
[5,] 1.3537303-0.8086236i -0.05713368+0.3935375i
[6,] 2.9751506-0.1729231i 0.39585849+3.3128439i
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Function dcmvnorm() returns the density according to (2):

> dcmvnorm(z,cm,cv)

[1] 5.103754e-04 1.809636e-05 2.981718e-03 1.172242e-03 4.466836e-03
[6] 6.803356e-07

So it is possible to determine a maximum likelihood estimate for the mean using direct
numerical optimization

> helper <- function(x){c(x[1]+1i*x[2], x[3]+1i*x[4])}
> objective <- function(x,cv){-sum(dcmvnorm(z,mean=helper(x),sigma=cv,log=TRUE))}
> helper(optim(c(1,0,1,0),objective,cv=cv)$par)

[1] 1.3154087-0.4478625i 0.3857039+1.3727617i

(helper functions are needed because optim() optimizes over Rn as opposed to Cn). This
shows reasonable agreement with the true value of the mean and indeed the analytic value of
the MLE, specifically

> colMeans(z)

[1] 1.3154264-0.4474723i 0.3860685+1.3727839i

3. The Gaussian process
In the context of the emulator, a (real) Gaussian process is usually defined as a random
function η : Rp −→ R which, for any set of points {x1, . . . , xn} in its domain D the random
vector {η(x1), . . . , η(xn)} is multivariate Gaussian.
It is convenient to specify E[η(x)| β] = h(x)β, that is, the expectation of the process at
point x ∈ D conditional on the (unknown) vector of coefficients β. Here h : Rp −→ Rq

specifies the q known regressor functions of x = (x1, . . . , xp)T ; a common choice is h(x) =
(1, x1, . . . , xp)T [giving q = p+1], but one is in principle free to choose any function of x. One
writes HT = (h(x1), . . . , h(xn)) when considering the entire design matrix X; the R idiom is
regressor.multi().
The covariance is typically given by

COV
(
η(x), η(x′)

)
= V

(
x − x′)

where V : Rn −→ R must be chosen so that the variance matrix of any finite set of observations
is always positive-definite. Bochner’s theorem (Feller 1971, chapter XIX) shows that V (·) must
be proportional to the characteristic function (CF) of a symmetric probability Borel measure.
Oakley (1999) uses techniques which have clear complex analogues to show that the posterior
mean of η(x) is given by
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h(x)T β + (COV(x, x1), . . . , COV(x, xn))T A−1
(
y − Hβ̂

)
(3)

Here A is an n×n matrix of correlations between the observations, σ2Aij = COV(η(xi), η(xj))
where σ2 is an overall variance term; and β̂ =

(
XT A−1X

)−1
XT A−1y is the maximum

likelihood estimator for β.
Equation (3) furnishes a cheap approximation to η(x) and is known as the ‘emulator’.

3.1. Complex Gaussian processes

The complex case is directly analogous, with η : Cp −→ C and β ∈ Cq. Writing COV(η(z1), . . . , η(zn)) =
Ω, so that element (i, j) of matrix Ω is COV(η(zi), η(zj)), we may relax the requirement that Ω
be symmetric positive definite to requiring only Hermitian positive definiteness. This allows
one to use the characteristic function of any, possibly non-symmetric, random variable Ψ with
density function f : Rp −→ R and characteristic function ϕ:

Ωij = COV(η(zi), η(zj)) = ϕ(zi − zj). (4)

That Ω remains Hermitian positive definite may be shown by evaluating a quadratic form
with it and arbitrary w ∈ Cn and establishing that it is real and non-negative:

w∗Ωw =
∑
i,j

wiCOV (η (zi) , η (zj)) wj definition of quadratic form

=
∑
i,j

wiϕ (zi − zj) wj covariance function is the CF of Ψ

=
∑
i,j

wi

[∫
t∈Cn

ei Re t∗(zi−zj)f(t) dt
]

wj definition of CF of Ψ

=
∫

t∈Cn

∑
i,j

wie
i Re t∗(zi−zj)wjf(t)

 dt integration and summation commute

=
∫

t∈Cn

∑
i,j

wie
i Re(t∗zi)wjei Re(t∗zj)f(t)

 dt expand and rearrange

=
∫

t∈Cn

∣∣∣∣∣∑
i

wie
i Re(t∗zi)

∣∣∣∣∣
2

f(t) dt algebra

⩾ 0. integral of sum of real positive functions

(This motivates the definition of the characteristic function of a complex multivariate ran-
dom variable Z as E

[
ei Re(t∗Z)

]
). Thus the covariance matrix is Hermitian positive definite:

although its entries are not necessarily real, its eigenvalues are all nonnegative.
In the real case one typically chooses Ψ to be a zero-mean Gaussian distribution; in the
complex case one can use the complex multivariate distribution given in equation (2) which
has characteristic function
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exp
(

i Re (t∗µ) − 1
4t∗Γt

)
(5)

and following Hankin (2012) in writing B = Γ/4, we can write the variance matrix as a
product of a (real) scalar σ2 term and

c(t) = exp (i Re (t∗µ) − t∗Bt). (6)

Thus the covariance matrix Ω is given by

Ωij = COV(η(zi), η(zj)) = σ2c (zi − zj) . (7)

In (6), B has the same meaning as in conventional emulator techniques and controls the
modulus of the covariance between η(z) and η(z′); µ governs the phase.
Given the above, it seems to be reasonable to follow Oakley (1999) and admit only diago-
nal B; but now distributions with nonzero mean can be considered (compare the real case
which requires a zero mean). A parametrization using diagonal B and complex mean vector
requires 3p (real) hyperparameters; compare 2p if Cp is identified with R2p.

4. Functions of several complex variables
Analytic functions of several complex variables are an important and interesting class of
objects; Krantz (1987) motivates and discusses the discipline. Formally, consider f : Cn −→ C,
n ⩾ 2 and write f(z1, . . . , zn). Function f is analytic if it satisfies the Cauchy-Riemann
conditions in each variable separately, that is ∂f/∂zj = 0, 1 ⩽ j ⩽ n.
Such an f is continuous (due to a “non-trivial theorem of Hartogs”) and continuously differ-
entiable to arbitrarily high order. Krantz goes on to state some results which are startling if
one’s exposure to complex analysis is restricted to functions of a single variable: for example,
any isolated singularity is removable.

5. Numerical illustration of these ideas
The natural definition of complex Gaussian processes above, together with the features of
analytic functions of several complex variables, suggests that a complex emulation of analytic
functions of several complex variables might be a useful technique.
The ideas presented above, and the cmvnorm package, can now be used to sample directly
from an appropriate complex Gaussian distribution and estimate the roughness parameters:

> val <- latin.hypercube(40,2,names=c('a','b'),complex = TRUE)
> head(val)

a b
[1,] 0.5625+0.5375i 0.8125+0.9125i
[2,] 0.1375+0.8625i 0.5125+0.9625i
[3,] 0.6125+0.1625i 0.7625+0.7625i
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[4,] 0.9625+0.9625i 0.4125+0.9875i
[5,] 0.9125+0.6625i 0.2125+0.7125i
[6,] 0.5875+0.9375i 0.5625+0.2875i

(function latin.hypercube() is used to generate a random complex design matrix). We may
now specify a variance matrix using simple values for the roughness hyperparameters B =
( 1 0

0 2 ) and µ = (1, i)T :

> true_scales <- c(1,2)
> true_means <- c(1,1i)
> A <- corr_complex(val, means=true_means, scales=true_scales)
> round(A[1:4,1:4],2)

[,1] [,2] [,3] [,4]
[1,] 1.00+0.00i 0.58-0.23i 0.82-0.08i 0.45+0.23i
[2,] 0.58+0.23i 1.00+0.00i 0.38+0.11i 0.32+0.37i
[3,] 0.82+0.08i 0.38-0.11i 1.00+0.00i 0.28+0.18i
[4,] 0.45-0.23i 0.32-0.37i 0.28-0.18i 1.00+0.00i

Function corr_complex() is a complex generalization of corr(); matrix A is Hermitian
positive-definite:

> all(eigen(A)$values > 0)

[1] TRUE

It is now possible to make a single multivariate observation d of this process, using β =
(1, 1 + i, 1 − 2i)T :

> true_beta <- c(1,1+1i,1-2i)
> d <- drop(rcmvnorm(n=1,mean=regressor.multi(val) %*% true_beta,sigma=A))
> head(d)

[1] 2.455878+0.2450098i 1.852221-0.5025303i 2.682512-0.1578610i
[4] 2.099184+2.1484621i 1.875912+1.3859936i 2.256226+0.0353483i

Thus d is a single observation from a complex multivariate Gaussian distribution. Most of
the functions of the emulator package operate without modification. Thus betahat.fun(),
which calculates the maximum likelihood estimate β̂ =

(
H∗A−1H

)−1
HT A−1y takes complex

values directly:

> betahat.fun(val,solve(A),d)

const a b
0.7545438-0.4629857i 1.1298399+0.9024487i 1.3295791-1.7669567i
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However, because the likelihood function is different, the interpolant() functionality is
implemented in the cmvnorm package by interpolant.quick.complex(), named in analogy
to interpolant.quick() of package emulator.
For example, it is possible to evaluate the posterior distribution of the process at (0.5, 0.3 +
0.1i), a point at which no observation has been made:

> interpolant.quick.complex(rbind(c(0.5,0.3+0.1i)),d,
+ val,solve(A),scales=true_scales,means=true_means,give.Z=TRUE)

$mstar.star
[1] 1.329214+0.2606067i

$Z
[1] 0.2217012

$prior
[1] 1.895033-0.4088905i

Thus the posterior distribution for the process is complex Gaussian at this point with a mean
of about 1.33 + 0.26i and a variance of about 0.22.

5.1. Analytic functions

These techniques are now used to emulate an analytic function of several complex variables. A
complex function’s being analytic is a very strong restriction; Needham (2004) uses ‘rigidity’
to describe the severe constraint that analyticity represents.
Here the Weierstrass σ-function (Chandrasekharan 1985) is chosen as an example, on the
grounds that Littlewood and Offord (1948) consider it to be a typical entire function in
a well-defined sense. The elliptic package (Hankin 2006) is used for numerical evaluation.
The σ-function takes a primary argument z and two invariants g1, g2, so a three-column
complex design matrix is required:

> library("elliptic")
> valsigma <-
+ 2+1i + round(latin.hypercube(30,3,names=c("z","g1","g2"),complex=TRUE)/4,2)
> head(valsigma)

z g1 g2
[1,] 2.20+1.16i 2.02+1.16i 2.22+1.00i
[2,] 2.05+1.19i 2.16+1.15i 2.25+1.05i
[3,] 2.14+1.20i 2.18+1.04i 2.21+1.14i
[4,] 2.20+1.12i 2.20+1.01i 2.10+1.10i
[5,] 2.07+1.01i 2.07+1.17i 2.23+1.18i
[6,] 2.10+1.00i 2.23+1.23i 2.12+1.01i

(an offset is needed because σ(z, g1, g2) = z + O
(
z5)

). The σ-function can now be evaluated
at the points on the design matrix:
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> dsigma <- apply(valsigma,1,function(u){sigma(u[1],g=u[2:3])})

One way of estimating the roughness parameters is to use maximum likelihood. The likelihood
for any set of roughness parameters is given by Oakley (1999) as

(
σ2)− n−q

2 |A|−1/2
∣∣∣HT A−1H

∣∣∣−1/2

with complex generalization
(
σ2)−(n−q) |A|−1 ∣∣H∗A−1H

∣∣−1 which is calculated in the package
by function scales.likelihood.complex(); this can be used to return the log-likelihood for
a specific set of roughness parameters:

> scales.likelihood.complex(scales=c(1,1,2),means=c(1,1+1i,1-2i),
+ zold=valsigma,z=dsigma,give_log=TRUE)

[1] 141.3014

Numerical methods can then be used to find the maximum likelihood estimate. Because
function optim() optimizes over Rn, helper functions are again needed which translate from
the optimand to scales and means:

> scales <- function(x){exp(x[c(1,2,2)])}
> means <- function(x){x[c(3,4,4)] + 1i*x[c(5,6,6)]}

Because the diagonal elements of B are strictly positive, their logarithms are optimized,
following Hankin (2005); it is implicitly assumed that the scales and means associated with g1
and g2 are equal.

> objective <- function(x,valsigma,dsigma){
+ -scales.likelihood.complex(scales=scales(x),means=means(x),zold=valsigma,z=dsigma)
+ }
> start <-
+ c(-0.538, -5.668, 0.6633, -0.0084, -1.73, -0.028)
> jj <- optim(start,objective,valsigma=valsigma, dsigma=dsigma,method="SANN",control=list(maxit=100))
> (u <- jj$par)

[1] -0.5380 -5.6680 0.6633 -0.0084 -1.7300 -0.0280

Function corr_complex() may now be used to calculate the covariance of the observations:

> Asigma <- corr_complex(z1=valsigma,scales=scales(u),means=means(u))

So now we can compare the emulator against the “true” value:

> interpolant.quick.complex(rbind(c(2+1i,2+1i,2+1i)), zold=valsigma,
+ d=dsigma,Ainv=solve(Asigma),scales=scales(u),means=means(u))

[1] 3.07378+1.273161i

> sigma(2+1i,g=c(2+1i,2+1i))
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[1] 3.078255+1.257819i

showing reasonable agreement. It is also possible to test the hypothesis HR : µ ∈ R2 (that
is, the variance matrix A is real), by calculating the likelihood ratio of the unconstrained
model (6) to that obtained by HR. This may be achieved by constraining the optimization
to satisfy µ ∈ R2:

> ob2 <- function(x,valsigma,dsigma){
+ -scales.likelihood.complex(scales=scales(x),means=c(0,0,0),zold=valsigma,z=dsigma)
+ }
> jjr <- optim(u[1:2],ob2,
+ method="SANN",control=list(maxit=1000),valsigma=valsigma,dsigma=dsigma)
> (ur <- jjr$par)

[1] 0.456770 -4.183496

so the test statistic D is given by

> LR <- scales.likelihood.complex(scales=scales(ur),means=c(0,0,0),zold=valsigma,z=dsigma)
> LC <- scales.likelihood.complex(scales=scales(u),means=means(u),zold=valsigma,z=dsigma)
> (D <- 2*(LC-LR))

[1] 19.63012

Observing that D is in the tail region of its asymptotic distribution, χ2
3, the hypothesis HR

may be rejected.

6. Conclusions
The cmvnorm package for the complex multivariate Gaussian distribution has been introduced
and motivated. The Gaussian process has been generalized to the complex case, and a complex
generalization of the emulator technique has been applied to an analytic function of several
complex variables. The complex variance matrix was specified using a novel parameterization
which accommodated non-real covariances in the context of circularly symmetric random
variables. Further work might include numerical support for the complex multivariate Student
t distribution.
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