To cite the clifford
package in publications please use
Hankin (2022). This short document shows
how quaternionic arithmetic may be implemented as a special case of
Clifford algebras. This is done for illustrative purposes only; to
manipulate quaternions in R the onion
package (Hankin 2006) is much more efficient and
includes more transparent idiom.
Hamilton’s Broome Bridge insight:
i2 = j2 = k2 = ijk = −1
The BBI and associativity together imply
jk = −kj = i ki = −ik = j ij = −ji = k
and if we require a distributive algebra we get the quaternions. A general quaternion is of the form a + ib + jc + kd; addition is componentwise and multiplication follows from the above.
To express quaternionic multiplication using Clifford algebra we make the following identifications:
$$ \mathbf{i}\leftrightarrow -e_{12}\\ \mathbf{j}\leftrightarrow -e_{13}\\ \mathbf{k}\leftrightarrow -e_{23}\\ $$
Thus, for example, ii = (−e12)(−e12) = +e1212 = −e1122 = −1
and ij = (−e12)(−e13) = +e1213 = −e1123 = −e23 = k.
The default signature [in which ei2 = +1]
is fine here, but as a safety measure we can set maxdim
to
3:
We might wish to multiply q1 = 1 + 2i + 3j + 4k by q2 = −2 + i − 2j + k:
## Element of a Clifford algebra, equal to
## + 1 - 2e_12 - 3e_13 - 4e_23
## Element of a Clifford algebra, equal to
## - 2 - 1e_12 + 2e_13 - 1e_23
## Element of a Clifford algebra, equal to
## - 2 - 8e_12 + 6e_13 + 14e_23
The product would correspond to −2 + 8i − 6j − 14k.
Note that the “*
” in “q1*q2
” is a
clifford product. It is possible to leverage the
onion
package and coerce between clifford
objects and quaternions (but don’t actually do it, you crazy fool):
`clifford_to_quaternion` <- function(C){
C <- as.clifford(C)
tC <- disordR::elements(terms(C))
stopifnot(all(c(tC,recursive=TRUE) <= 3))
jj <- unlist(lapply(tC,length))
stopifnot(all(jj <= 2)) # safety check
stopifnot(all(jj%%2 == 0)) # safety check
out <- matrix(c(const(C), -getcoeffs(C,list(c(1,2),c(1,3),c(2,3)) )))
as.quaternion(out)
}
`quaternion_to_clifford` <- function(Q){
Q <- as.numeric(Q)
stopifnot(length(Q)==4)
clifford(list(numeric(0),c(1,2),c(1,3),c(2,3)),c(Q[1],-Q[2:4]))
}
We may verify that these maps behave properly by defining some random-ish quaternions and Clifford objects:
q1 <- +1 + 2* -e(c(1,2)) + 3*-e(c(1,3)) + 4*-e(c(2,3))
q2 <- -2 + 1* -e(c(1,2)) - 2*-e(c(1,3)) + 1*-e(c(2,3))
H1 <- as.quaternion(c(3,-5,2,1),single=TRUE)
H2 <- as.quaternion(c(1,2,-2,2),single=TRUE)
First, check that they are inverses of one another:
c( # check they are inverses of one another
q1 == quaternion_to_clifford(clifford_to_quaternion(q1)),
q2 == quaternion_to_clifford(clifford_to_quaternion(q2)),
H1 == clifford_to_quaternion(quaternion_to_clifford(H1)),
H2 == clifford_to_quaternion(quaternion_to_clifford(H2))
)
## [1] TRUE TRUE TRUE TRUE
Next, verify that they are homomorphisms:
c(
q1*q2 == quaternion_to_clifford(clifford_to_quaternion(q1)*clifford_to_quaternion(q2)),
H1*H2 == clifford_to_quaternion(quaternion_to_clifford(H1)*quaternion_to_clifford(H2))
)
## [1] TRUE TRUE
Note that in package idiom the asterisk, “*
” represents
either Clifford geometric product or Hamilton’s quaternionic
multiplication depending on its arguments.
Alternatively we might consider the even subalgebra of Cl (0, 3) with general element q0 + q1e23 − q2e13 + q3e12 (note change of sign for q2). Thus
$$ \mathbf{i}\leftrightarrow e_{23}\\ \mathbf{j}\leftrightarrow -e_{13}\\ \mathbf{k}\leftrightarrow e_{12}\\ $$
A quick-and-dirty R function might be
signature(0,3)
cliff2quat <- function(C){
out <- getcoeffs(C,list(numeric(0),c(2,3),c(1,3),c(1,2)))
out[2] <- -out[2]
as.quaternion(out,single=TRUE)
}
quat2cliff <- function(H){
jj <- c(as.matrix(H))
jj[2] <- -jj[2]
clifford(list(numeric(0),c(2,3),c(1,3),c(1,2)),jj)
}
Then verification is straightforward:
c(
cliff2quat(quat2cliff(H1)) == H1,
cliff2quat(quat2cliff(H2)) == H2,
quat2cliff(cliff2quat(q1)) == q1,
quat2cliff(cliff2quat(q2)) == q2,
cliff2quat(q1*q2) == cliff2quat(q1) * cliff2quat(q2),
quat2cliff(H1*H2) == quat2cliff(H1) * quat2cliff(H2)
)
## [1] TRUE TRUE TRUE TRUE TRUE TRUE