To cite the clifford
package in publications please use
Hankin (2022b). In this short document I
show how Clifford algebra may be used to effect Lorentz transforms, and
showcase the clifford
R package. Throughout, we use units
in which c = 1. Notation
follows Snygg (2010). Consider the
following four-vector:
## [1] 1 5 3 2
We wish to consider the effect of a Lorentz transformation of
s
. This is done by the boost()
function of the
lorentz
package (Hankin
2022a):
## t x y z
## t 1.1867817 -0.23735633 -0.35603450 -0.47471266
## x -0.2373563 1.02576299 0.03864448 0.05152597
## y -0.3560345 0.03864448 1.05796672 0.07728896
## z -0.4747127 0.05152597 0.07728896 1.10305195
The transformation itself is simply matrix multiplication:
## [,1]
## t -2.017529
## x 5.110444
## y 3.165666
## z 2.220888
We will effect this operation using Clifford algebra. Conceptually I
am following Snygg but using a somewhat modified notation for
consistency with the clifford
and lorentz
packages.
The general form for a Lorentz transform of speed u in the x-direction is
$$ \begin{pmatrix} \overline{t}\\ \overline{x} \end{pmatrix} = \begin{pmatrix} \gamma&-\gamma v\\ -\gamma v&\gamma \end{pmatrix} \begin{pmatrix} t\\x\end{pmatrix} $$
where γ = (1 − u2)−1/2. Writing cosh ϕ = γ and noting that ϕ is real (sometimes ϕ is known as the rapidity) we get
$$ \begin{pmatrix} \cosh\phi&-\sinh\phi\\ -\sinh\phi &\cosh\phi \end{pmatrix} $$ for the transformation, and we can see that the matrix has unit determinant.
Above we considered the four-vector s = (1, 5, 3, 2). In Clifford formalism this appears as
## Element of a Clifford algebra, equal to
## + 1e_1 + 5e_2 + 3e_3 + 2e_4
Algebraically this would be 1e1 + 5e2 + 3e3 + 2e4
(Snygg would write 1e0 + 5e1 + 3e2 + 2e3;
we cannot use that notation here because basis vectors are numbered from
1 in the package, not zero). Also note that the vectors appear in
implementation-specific order, as per disordR
discipline
(Hankin 2022c). The metric would be
$$ \begin{pmatrix} 1&0&0&0\\ 0&-1&0&0\\ 0&0&-1&0\\ 0&0&0&-1 \end{pmatrix} $$
[NB in relativity, the word “signature” refers to the eigenvalues of the metric, so the signature of the above matrix would be (1, 3) [or sometimes + − −−], because it has one positive and three negative eigenvalues. In package idiom, “signature” means the number of basis vectors that square to +1 and −1, so we would implement this metric using a signature of (1, 3)].
The squared interval for our four-vector would be given by
## [,1]
## [1,] -37
We might use the slightly slicker and more efficient idiom
quad.form()
from the quadform
package:
## [,1]
## [1,] -37
The Clifford equivalent would be scalprod()
[remembering
to set the signature to 1]:
## [1] -37
We seek a boost B ∈ 𝒞1, 3 such that $\overline{s}=B^{-1}sB$ (juxtaposition indicating geometric product). We will start with a boost in the x-direction with rapidity ϕ. This would be B = cosh (ϕ/2) + e12sinh (ϕ/2). We note that B−1 = cosh (ϕ/2) − e12sinh (ϕ/2). Numerically:
phi <- 2.1234534 # just a made-up random value
B <- cosh(phi/2) + sinh(phi/2)*e(1:2)
Binv <- rev(B) # cosh(phi/2)- sinh(phi/2)*e(1:2)
B*Binv
## Element of a Clifford algebra, equal to
## scalar ( 1 )
We may verify that rapidities add:
## Element of a Clifford algebra, equal to
## + 1.333011 + 0.8814299e_12
## Element of a Clifford algebra, equal to
## + 1.333011 + 0.8814299e_12
We may formally write B = exp (e12ϕ/2) on the grounds that
$$ \begin{eqnarray} \exp({\mathbf e}_{12}x) &=&1+\mathbf{e}_{12}x + \frac{(\mathbf{e}_{12}x)^2}{2!} + \frac{(\mathbf{e}_{12}x)^3}{3!}+\frac{(\mathbf{e}_{12}x)^4}{4!}+\cdots\\ &=& (1+x^2/2+x^4/4!+\cdots) + \mathbf{e}_{12}(x+\frac{x^3}{3!}+\cdots)\\ &=& \cosh x + \mathbf{e}_{12}\sinh x \end{eqnarray} $$
and note that this exponential obeys the usual rules for the regular exponential function ex, x ∈ ℝ. More generally, if we have a transform of rapidity ϕ and direction cosines kx, ky, kz then the transform would be
Bxyz = cosh (ϕ/2) + kxe12sinh (ϕ/2) + kye13sinh (ϕ/2) + kze14sinh (ϕ/2)
and we can use standard Clifford algebra (together with the fact that kx2 + ky2 + kz2 = 1) to demonstrate the transformations. Numerically:
B3 <- function(phi,k){cosh(phi/2) + (
+k[1]*sinh(phi/2)*e(c(1,2))
+k[2]*sinh(phi/2)*e(c(1,3))
+k[3]*sinh(phi/2)*e(c(1,4))
)}
k <- function(kx,ky){c(kx, ky, sqrt(1-kx^2-ky^2))}
kx <- +0.23
ky <- -0.38
k1 <- k(kx=0.23, ky=-0.38)
sum(k1^2) # verify; should be = 1
## [1] 1
## Element of a Clifford algebra, equal to
## + 1.668519 + 0.3071989e_12 - 0.507546e_13 + 1.196654e_14
## Element of a Clifford algebra, equal to
## + 1.668519 + 0.3071989e_12 - 0.507546e_13 + 1.196654e_14
But if the two boosts have different direction cosines, the result is more complicated:
## Element of a Clifford algebra, equal to
## + 3.716216 - 0.479412e_12 - 0.653413e_13 + 0.277158e_23 + 3.722481e_14 -
## 1.071824e_24 + 0.691205e_34
Above, we see new terms not present in the pure boosts which correspond to rotation.
Now we consider a general four-vector s = s1e1 + s2e2 + s3e3 + s4e4 and calculate B−1sB. This is made easier if we use the facts that e12 commutes with e3 and e4 as well as scalars, and anticommutes with e1 and e2. Noting that exp (e12) is a linear combination of a scalar and e12 we have
$$ \begin{eqnarray} B^{-1}sB &=& \exp(-\mathbf{e}_{12}\phi/2)(s^1\mathbf{e}_1+s^2\mathbf{e}_2+s^3\mathbf{e}_3+s^4\mathbf{e}_4)\exp(\mathbf{e}_{12}\phi/2)\\ &=& (\mathbf{e}_1s^1+\mathbf{e}_2s^2)\exp(\mathbf{e}_{12}\phi/2)\exp(\mathbf{e}_{12}\phi/2)+\mathbf{e}_3s^3 + \mathbf{e}_4s^4\\ &=& \mathbf{e}_1(s^1\cosh\phi-s^2\sinh\phi)+\mathbf{e}_2(s^2\cosh\phi-s^1\sinh\phi) +\mathbf{e}_3s^3+\mathbf{e}_4s^4 \end{eqnarray}$$
as required (it matches the matrix version). If we have two boosts B1 and B2 then the combined boost is either B1B2 (for B1 followed by B2) or B2B1 (for B2 followed by B1). Numerical methods are straightforward as I will demonstrate below.
Above we considered boost Bmat
, and here I will show the
effect of this boost in terms of Clifford objects, using a specialist
function f()
:
f <- function(u){
phi <- acosh(gam(u)) # rapidity
k <- cosines(u) # direction cosines
return(
cosh(phi/2) # t
+ k[1]*sinh(phi/2)*basis(c(1,2)) # x
+ k[2]*sinh(phi/2)*basis(c(1,3)) # y
+ k[3]*sinh(phi/2)*basis(c(1,4)) # z
)
}
Thus we can express the Lorentz transform as a Clifford object:
## Element of a Clifford algebra, equal to
## + 1.0457 - 0.1135e_12 - 0.17025e_13 - 0.22699e_14
The first thing to do is to verify that the inverse of B
behaves as expected:
## Element of a Clifford algebra, equal to
## scalar ( 1 )
Then we can apply the transformation $\overline{s}=B^{-1}sB$:
## Element of a Clifford algebra, equal to
## - 2.0175e_1 + 5.1104e_2 + 3.1657e_3 + 2.2209e_4
Comparing with the result from the lorentz
package
## [,1]
## t -2.0175
## x 5.1104
## y 3.1657
## z 2.2209
we see agreement to within numerical precision. We can further verify that the squared interval is unchanged:
## [1] -37
matching the untransformed square interval.
Successive Lorentz boosts can induce a rotation as well as a translation.
u <- as.3vel(c(0.2, 0.3, 0.4))
v <- as.3vel(c(0.5, 0.0, -0.4))
w <- as.3vel(c(0.0, 0.7, 0.1))
Buvw <- f(u)*f(v)*f(w)
zap(Buvw)
## Element of a Clifford algebra, equal to
## + 1.2914 + 0.45284e_12 + 0.69409e_13 - 0.14103e_23 + 0.07821e_14 + 0.07767e_24
## + 0.02902e_34 - 0.04011e_1234
In the above, note that Clifford object Buvw
has a
nonzero scalar component, and also a nonzero e_1234
component. However, it represents a consistent Lorentz
transformation:
## [1] 1
We can now apply this transform to a four-velocity:
## Element of a Clifford algebra, equal to
## + 2.3891e_1 + 0.98367e_2 + 1.9312e_3 + 0.10269e_4
We can shed some light on this representation of Lorentz transforms as follows:
signature(1,3)
L <- list(
C = basis(numeric()),
e12 = basis(c(1,2)), e13 = basis(c(1,3)),
e14 = basis(c(1,4)), e23 = basis(c(2,3)),
e24 = basis(c(2,4)), e34 = basis(c(3,4)),
e1234 = basis(1:4)
)
out <- noquote(matrix("",8,8))
rownames(out) <- names(L)
colnames(out) <- names(L)
for(i in 1:8){
for(j in 1:8){
out[i,j] <- gsub('[_ ]','',as.character(L[[i]]*L[[j]]))
}
}
options("width" = 110)
out
## C e12 e13 e14 e23 e24 e34 e1234
## C 1 +1e12 +1e13 +1e14 +1e23 +1e24 +1e34 +1e1234
## e12 +1e12 1 -1e23 -1e24 -1e13 -1e14 +1e1234 +1e34
## e13 +1e13 +1e23 1 -1e34 +1e12 -1e1234 -1e14 -1e24
## e14 +1e14 +1e24 +1e34 1 +1e1234 +1e12 +1e13 +1e23
## e23 +1e23 +1e13 -1e12 +1e1234 -1 +1e34 -1e24 -1e14
## e24 +1e24 +1e14 -1e1234 -1e12 -1e34 -1 +1e23 +1e13
## e34 +1e34 +1e1234 +1e14 -1e13 +1e24 -1e23 -1 -1e12
## e1234 +1e1234 +1e34 -1e24 +1e23 -1e14 +1e13 -1e12 -1
Thus we can see, for example, that e12*e13 = -e23
and
e13*e12 = +e23
.