
Package: clifford (via r-universe)
October 23, 2024

Type Package

Title Arbitrary Dimensional Clifford Algebras

Version 1.0-9

Depends R (>= 4.1.0)

Maintainer Robin K. S. Hankin <hankin.robin@gmail.com>

Description A suite of routines for Clifford algebras, using the 'Map'
class of the Standard Template Library. Canonical reference:
Hestenes (1987, ISBN 90-277-1673-0, ``Clifford algebra to
geometric calculus''). Special cases including Lorentz
transforms, quaternion multiplication, and Grassmann algebra,
are discussed. Vignettes presenting conformal geometric
algebra, quaternions and split quaternions, dual numbers, and
Lorentz transforms are included. The package follows 'disordR'
discipline.

License GPL (>= 2)

LazyData yes

Suggests knitr,rmarkdown,testthat,onion (>= 1.5-3),lorentz (>=
1.1-1),emulator (>= 1.2-24),jordan (>= 1.0-5),permutations (>=
1.1-5), covr

VignetteBuilder knitr

Imports Rcpp (>= 0.12.5),disordR (>= 0.0-8), magrittr, methods,
partitions (>= 1.10-4), freealg (>= 1.0-4)

LinkingTo Rcpp,BH

URL https://github.com/RobinHankin/clifford,

https://robinhankin.github.io/clifford/

BugReports https://github.com/RobinHankin/clifford/issues

Repository https://robinhankin.r-universe.dev

RemoteUrl https://github.com/robinhankin/clifford

RemoteRef HEAD

RemoteSha d4595b3adc6ed37b8f54326d5d339719b9c4a803

1

https://github.com/RobinHankin/clifford
https://robinhankin.github.io/clifford/
https://github.com/RobinHankin/clifford/issues

2 clifford-package

Contents

clifford-package . 2
allcliff . 3
antivector . 4
as.vector . 6
cartan . 7
clifford . 8
const . 9
dot-class . 11
drop . 11
even . 12
Extract.clifford . 13
grade . 15
homog . 17
horner . 18
involution . 19
lowlevel . 21
magnitude . 22
minus . 23
numeric_to_clifford . 24
Ops.clifford . 25
print . 29
pseudoscalar . 30
quaternion . 31
rcliff . 32
signature . 34
summary.clifford . 36
term . 37
zap . 38
zero . 39

Index 41

clifford-package Arbitrary Dimensional Clifford Algebras

Description

A suite of routines for Clifford algebras, using the ’Map’ class of the Standard Template Library.
Canonical reference: Hestenes (1987, ISBN 90-277-1673-0, "Clifford algebra to geometric cal-
culus"). Special cases including Lorentz transforms, quaternion multiplication, and Grassmann
algebra, are discussed. Vignettes presenting conformal geometric algebra, quaternions and split
quaternions, dual numbers, and Lorentz transforms are included. The package follows ’disordR’
discipline.

allcliff 3

Details

The DESCRIPTION file: This package was not yet installed at build time.

Index: This package was not yet installed at build time.

Author(s)

Robin K. S. Hankin [aut, cre] (<https://orcid.org/0000-0001-5982-0415>)

Maintainer: Robin K. S. Hankin <hankin.robin@gmail.com>

References

• J. Snygg (2012). A new approach to differential geometry using Clifford’s geometric Algebra,
Birkhauser. ISBN 978-0-8176-8282-8

• D. Hestenes (1987). Clifford algebra to geometric calculus, Kluwer. ISBN 90-277-1673-0

• C. Perwass (2009). Geometric algebra with applications in engineering, Springer. ISBN
978-3-540-89068-3

• D. Hildenbrand (2013). Foundations of geometric algebra computing. Springer, ISBN 978-3-
642-31794-1

See Also

clifford

Examples

as.1vector(1:4)

as.1vector(1:4) * rcliff()

Following from Ablamowicz and Fauser (see vignette):
x <- clifford(list(1:3,c(1,5,7,8,10)),c(4,-10)) + 2
y <- clifford(list(c(1,2,3,7),c(1,5,6,8),c(1,4,6,7)),c(4,1,-3)) - 1
x*y # signature irrelevant

allcliff Clifford object containing all possible terms

Description

The Clifford algebra on basis vectors e1, e2, . . . , en has 2n independent multivectors. Function
allcliff() generates a clifford object with a nonzero coefficient for each multivector.

4 antivector

Usage

allcliff(n,grade)

Arguments

n Integer specifying dimension of underlying vector space

grade Grade of multivector to be returned. If missing, multivector contains every term
of every grade ≤ n

Author(s)

Robin K. S. Hankin

Examples

allcliff(6)

a <- allcliff(5)
a[] <- rcliff()*100

antivector Antivectors or pseudovectors

Description

Antivectors or pseudovectors

Usage

antivector(v, n = length(v))
as.antivector(v)
is.antivector(C, include.pseudoscalar=FALSE)

Arguments

v Numeric vector

n Integer specifying dimensionality of underlying vector space

C Clifford object

include.pseudoscalar

Boolean: should the pseudoscalar be considered an antivector?

antivector 5

Details

An antivector is an n-dimensional Clifford object, all of whose terms are of grade n − 1. An
antivector has n degrees of freedom. Function antivector(v,n) interprets v[i] as the coefficient
of e1e2 . . . ei−1ei+1 . . . en.

Function as.antivector() is a convenience wrapper, coercing its argument to an antivector of
minimal dimension (zero entries are interpreted consistently).

The pseudoscalar is a peculiar edge case. Consider:

A <- clifford(list(c(1,2,3)))
B <- A + clifford(list(c(1,2,4)))

> is.antivector(A)
[1] FALSE
> is.antivector(B)
[1] TRUE
> is.antivector(A,include.pseudoscalar=TRUE)
[1] TRUE
> is.antivector(B,include.pseudoscalar=TRUE)
[1] TRUE

One could argue that A should be an antivector as it is a term in B, which is definitely an antivector.
Use include.pseudoscalar=TRUE to ensure consistency in this case.

Compare as.1vector(), which returns a clifford object of grade 1.

Note

An antivector is always a blade.

Author(s)

Robin K. S. Hankin

References

Wikipedia contributors. (2018, July 20). “Antivector”. In Wikipedia, The Free Encyclopedia. Re-
trieved 19:06, January 27, 2020, from https://en.wikipedia.org/w/index.php?title=Antivector&
oldid=851094060

See Also

as.1vector

Examples

antivector(1:5)

as.1vector(c(1,1,2)) %X% as.1vector(c(3,2,2))
c(1*2-2*2, 2*3-1*2, 1*2-1*3) # note sign of e_13

https://en.wikipedia.org/w/index.php?title=Antivector&oldid=851094060
https://en.wikipedia.org/w/index.php?title=Antivector&oldid=851094060

6 as.vector

as.vector Coerce a clifford vector to a numeric vector

Description

Given a clifford object with all terms of grade 1, return the corresponding numeric vector

Usage

S3 method for class 'clifford'
as.vector(x,mode = "any")

Arguments

x Object of class clifford

mode ignored

Note

The awkward R idiom of this function is because the terms may be stored in any order; see the
examples

Author(s)

Robin K. S. Hankin

See Also

numeric_to_clifford

Examples

x <- clifford(list(6,2,9),1:3)
as.vector(x)

as.1vector(as.vector(x)) == x # should be TRUE

cartan 7

cartan Cartan map between clifford algebras

Description

Cartan’s map isomorphisms from Cl(p, q) to Cl(p− 4, q + 4) and Cl(p+ 4, q − 4)

Usage

cartan(C, n = 1)
cartan_inverse(C, n = 1)

Arguments

C Object of class clifford

n Strictly positive integer

Value

Returns an object of class clifford. The default value n=1 maps Cl(4, q) to Cl(0, q+4) (cartan())
and Cl(0, q) to Cl(4, q − 4).

Author(s)

Robin K. S. Hankin

References

E. Hitzer and S. Sangwine 2017. “Multivector and multivector matrix inverses in real Clifford
algebras”, Applied Mathematics and Computation. 311:3755-89

See Also

clifford

Examples

a <- rcliff(d=7) # Cl(4,3)
b <- rcliff(d=7) # Cl(4,3)
signature(4,3) # e1^2 = e2^2 = e3^2 = e4^2 = +1; e5^2 = e6^2=e7^2 = -1
ab <- a*b # multiplication in Cl(4,3)

signature(0,7) # e1^2 = ... = e7^2 = -1
cartan(a)*cartan(b) == cartan(ab) # multiplication in Cl(0,7); should be TRUE

signature(Inf) # restore default

8 clifford

clifford Create, coerce, and test for clifford objects

Description

An object of class clifford is a member of a Clifford algebra. These objects may be added and
multiplied, and have various applications in physics and mathematics.

Usage

clifford(terms, coeffs=1)
is_ok_clifford(terms, coeffs)
as.clifford(x)
is.clifford(x)
nbits(x)
nterms(x)
S3 method for class 'clifford'
dim(x)

Arguments

terms A list of integer vectors with strictly increasing entries corresponding to the basis
vectors of the underlying vector space

coeffs Numeric vector of coefficients

x Object of class clifford

Details

• Function clifford() is the formal creation mechanism for clifford objects. If coeffs is of
length 1, it will be recycled (even if terms is empty, in which case the zero Clifford object is
returned). Argument terms is passed through list_modifier(), so a zero entry is interpreted
as numeric(0)

• Function as.clifford() is much more user-friendly and attempts to coerce a range of input
arguments to clifford form

• Function nbits() returns the number of bits required in the low-level C routines to store the
terms (this is the largest entry in the list of terms). For a scalar, this is zero and for the zero
clifford object it (currently) returns zero as well although a case could be made for NULL

• Function nterms() returns the number of terms in the expression

• Function is_ok_clifford() is a helper function that checks for consistency of its arguments

Author(s)

Robin K. S. Hankin

const 9

References

Snygg 2012. “A new approach to differential geometry using Clifford’s geometric algebra”. Birkhauser;
Springer Science+Business.

See Also

Ops.clifford

Examples

(x <- clifford(list(1,2,1:4),1:3)) # Formal creation method
(y <- as.1vector(4:2))
(z <- rcliff(include.fewer=TRUE))

terms(x+100)
coeffs(z)

Clifford objects may be added and multiplied:

x + y
x*y

const The constant term of a Clifford object

Description

Get and set the constant term of a clifford object.

Usage

const(C,drop=TRUE)
is.real(C)
S3 replacement method for class 'clifford'
const(x) <- value

Arguments

C, x Clifford object

value Replacement value

drop Boolean, with default TRUE meaning to return the constant coerced to numeric,
and FALSE meaning to return a (constant) Clifford object

10 const

Details

Extractor method for specific terms. Function const() returns the constant element of a Clifford
object. Note that const(C) returns the same as grade(C,0), but is faster. If C is a numeric vector,
the first element is returned: any other elements are silently discarded, but this may change in future.

The R idiom in const<-() is slightly awkward:

> body(`const<-.clifford`)
{

stopifnot(length(value) == 1)
x <- x - const(x)
return(x + value)

}

The reason that it is not simply return(x-const(x)+value) or return(x+value-const(x)) is
to ensure numerical accuracy; see examples.

Author(s)

Robin K. S. Hankin

See Also

grade, clifford, getcoeffs, is.zero

Examples

X <- clifford(list(1,1:2,1:3,3:5),6:9)
X
X <- X + 1e300
X

const(X) # should be 1e300

const(X) <- 0.6
const(X) # should be 0.6, no numerical error

compare naive approach:

X <- clifford(list(1,1:2,1:3,3:5),6:9)+1e300
X+0.6-const(X) # constant gets lost in the numerics

X <- clifford(list(1,1:2,1:3,3:5),6:9)+1e-300
X-const(X)+0.6 # answer correct by virtue of left-associativity

x <- 2+rcliff(d=3,g=3)
jj <- x*cliffconj(x)
is.real(jj*rev(jj)) # should be TRUE

dot-class 11

dot-class Class “dot”

Description

The dot object is defined so that idiom like .[x,y] returns the commutator, that is, (x*y-y*x)/2.
The factor of 2 ensures that .[x,y] == x %X% y.

The dot object is generated by running script inst/dot.Rmd, which includes some further discus-
sion and technical documentation, and creates file dot.rda which resides in the data/ directory.

Arguments

x Object of any class

i, j elements to commute

... Further arguments to dot_error(), currently ignored

Value

Always returns an object of the same class as xy.

Author(s)

Robin K. S. Hankin

Examples

x <- rcliff()
y <- rcliff()
z <- rcliff()

.[x,.[y,z]] + .[y,.[z,x]] + .[z,.[x,y]] # Jacobi identity

drop Drop redundant information

Description

Coerce scalar Clifford objects to numeric

Usage

drop(x)
drop_clifford(x)

12 even

Arguments

x Clifford object

Details

If its argument is a pure scalar clifford object, or the pseudoscalar, coerce to numeric. Scalar or
pseudoscalar clifford objects are coerced to an unnamed numeric vector (of length 1). Checking for
being the pseudoscalar requires that option maxdim be set.

Function drop() is generic, dispatching to helper function drop_clifford() for clifford objects.
The logic of drop_clifford() prevents is.pseudoscalar() being called if maxdim is NULL.

Note

Many functions in the package take drop as an argument which, if TRUE, means that the function
returns a dropped value.

Author(s)

Robin K. S. Hankin

See Also

const,pseudoscalar

Examples

drop(as.clifford(5))

const(rcliff())
const(rcliff(),drop=FALSE)

even Even and odd clifford objects

Description

A clifford object is even if every term has even grade, and odd if every term has odd grade.

Functions is.even() and is.odd() test a clifford object for evenness or oddness.

Functions evenpart() and oddpart() extract the even or odd terms from a clifford object, and we
write A+ and A− respectively; we have A = A+ +A−

Usage

is.even(C)
is.odd(C)
evenpart(C)
oddpart(C)

Extract.clifford 13

Arguments

C Clifford object

Author(s)

Robin K. S. Hankin

See Also

grade

Examples

A <- rcliff()
A == evenpart(A) + oddpart(A) # should be true

Extract.clifford Extract or Replace Parts of a clifford

Description

Extract or replace subsets of cliffords.

Usage

S3 method for class 'clifford'
C[index, ...,drop=FALSE]
S3 replacement method for class 'clifford'
C[index, ...] <- value
coeffs(x)
coeffs(x) <- value
list_modifier(B)
getcoeffs(C, B)
S3 method for class 'clifford'
Im(z)
S3 method for class 'clifford'
Re(z)

Arguments

C, x, z A clifford object

index elements to extract or replace

value replacement value

B A list of integer vectors, terms

drop Boolean: should constant clifford objects be coerced to numeric?

... Further arguments

14 Extract.clifford

Details

Extraction and replacement methods. The extraction method uses getcoeffs() and the replace-
ment method uses low-level helper function c_overwrite().

In the extraction function a[index], if index is a list, further arguments are ignored; if not, the dots
are used. If index is a list, its elements are interpreted as integer vectors indicating which terms to
be extracted (even if it is a disord object). If index is a disord object, standard consistency rules
are applied. The extraction methods are designed so that idiom such as a[coeffs(a)>3] works.

For replacement methods, the standard use-case is a[i] <- b in which argument i is a list of integer
vectors and b a length-one numeric vector; (replacement vectors of length greater than one are cur-
rently not implemented, whether or not they violate disordR discipline). Otherwise, to manipulate
parts of a clifford object, use coeffs(a) <- value; disord discipline is enforced. Idiom such as
a[coeffs(a)<2] <- 0 is implemented experimentally, as syntactic sugar for coeffs(a)[coeffs(a)<2]
<- 0. Replacement using a list-valued index, as in A[i] <- value uses an ugly hack if value is zero.
Replacement methods are not yet finalised and not yet fully integrated with the disordR package.

Idiom such as a[] <- b follows the spray package. If b is a length-one scalar, then coeffs(a) <-
b has the same effect as a[] <- b.

Functions terms() [see term.Rd] and coeffs() extract the terms and coefficients from a clifford
object. These functions return disord objects but the ordering is consistent between them (an
extended discussion of this phenomenon is presented in the mvp package). Note that coeffs()
returns numeric(0) on the zero clifford object.

Function coeffs<-() (idiom coeffs(a) <- b) sets all coefficients of a to b. This has the same
effect as a[] <- b.

Extracting or replacing a list with a repeated elements is usually a Bad Idea (tm). However, if option
warn_on_repeats is set to FALSE, no warning will be given (and the coefficient will be the sum of
the coefficients of the term; see the examples).

Function getcoeffs() is a lower-level helper function that lacks the succour offered by [.clifford().
It returns a named numeric vector [not a disord object: the order of the elements is determined by
the order of argument B]. Compare standard extraction, eg a[index], which returns a clifford ob-
ject. The names of the returned vector are determined by function catterm().

Attempting to extract a coefficient of a term that includes a negative index will throw an error. The
coefficient of a term not present in the Clifford object (including term with an index larger than
indicated by maxyterm()) will return zero.

The index for the constant is formally list(numeric(0)), but this is a pain to type. Square bracket
extraction and getcoeffs() have special dispensation for zero entries, which are translated by
helper function list_modifier() to numeric(0) and listified if necessary. The upshot is that
x[0] and getcoeffs(x,0) work as expected, returning the constant.

Function Im() is a generic, which sets the real component of its argument to zero (as per the onion
package). Function Re() is a convenience synonym for const().

Vignette getcoeffs gives a more extended discussion of function getcoeffs().

See Also

Ops.clifford,clifford,term

https://CRAN.R-project.org/package=mvp
https://CRAN.R-project.org/package=onion

grade 15

Examples

A <- clifford(list(1,1:2,1:3),1:3)
B <- clifford(list(1:2,1:6),c(44,45))

A[1,c(1,3,4)]

A[2:3, 4] <- 99
A[] <- B

X <- 5 + 6*e(1) -7*e(1:3) + 3*e(4:5)
X[0] # special dispensation for zero
X[0,drop=TRUE] # coerce to numeric
X[list(0,1:3)]

getcoeffs(X,0)
getcoeffs(X,list(1,0,1:3))

clifford(list(1,1:2,1:2),1:3) # would give a warning

options("warn_on_repeats" = FALSE)
clifford(list(1,1:2,1:2),1:3) # works; 1e1 + 5e_12

options("warn_on_repeats" = TRUE) # return to default behaviour.

grade The grade of a clifford object

Description

The grade of a term is the number of basis vectors in it.

Usage

grade(C, n, drop=TRUE)
grade(C,n) <- value
grades(x)
gradesplus(x)
gradesminus(x)
gradeszero(x)

Arguments

C, x Clifford object

n Integer vector specifying grades to extract

16 grade

value Replacement value, a numeric vector
drop Boolean, with default TRUE meaning to coerce a constant Clifford object to nu-

meric, and FALSE meaning not to

Details

A term is a single expression in a Clifford object. It has a coefficient and is described by the basis
vectors it comprises. Thus 4e234 is a term but e3 + e5 is not.

The grade of a term is the number of basis vectors in it. Thus the grade of e1 is 1, and the grade of
e125 = e1e2e5 is 3. The grade operator ⟨·⟩r is used to extract terms of a particular grade, with

A = ⟨A⟩0 + ⟨A⟩1 + ⟨A⟩2 + · · · =
∑
r

⟨A⟩r

for any Clifford object A. Thus ⟨A⟩r is said to be homogenous of grade r. Hestenes sometimes
writes subscripts that specify grades using an overbar as in ⟨A⟩r. It is conventional to denote the
zero-grade object ⟨A⟩0 as simply ⟨A⟩.
We have

⟨A+B⟩r = ⟨A⟩r + ⟨B⟩r ⟨λA⟩r = λ ⟨A⟩r ⟨⟨A⟩r⟩s = ⟨A⟩r δrs.

Function grades() returns an (unordered) vector specifying the grades of the constituent terms.
Function grades<-() allows idiom such as grade(x,1:2) <- 7 to operate as expected [here to set
all coefficients of terms with grades 1 or 2 to value 7].

Function gradesplus() returns the same but counting only basis vectors that square to +1, and
gradesminus() counts only basis vectors that square to −1. Function signature() controls which
basis vectors square to +1 and which to −1.

From Perwass, page 57, given a bilinear form

⟨x,x⟩ = x2
1 + x2

2 + · · ·+ x2
p − x2

p+1 − · · · − x2
p+q

and a basis blade eA with A ⊆ {1, . . . , p+ q}, then

gr(eA) = |{a ∈ A : 1 ≤ a ≤ p+ q}|

gr+(eA) = |{a ∈ A : 1 ≤ a ≤ p}|

gr−(eA) = |{a ∈ A : p < a ≤ p+ q}|

Function gradeszero() counts only the basis vectors squaring to zero (I have not seen this any-
where else, but it is a logical suggestion).

If the signature is zero, then the Clifford algebra reduces to a Grassmann algebra and products match
the wedge product of exterior calculus. In this case, functions gradesplus() and gradesminus()
return NA.

Function grade(C,n) returns a clifford object with just the elements of grade g, where g %in% n.

The zero grade term, grade(C,0), is given more naturally by const(C).

Function c_grade() is a helper function that is documented at Ops.clifford.Rd.

homog 17

Note

In the C code, “term” has a slightly different meaning, referring to the vectors without the associated
coefficient.

Author(s)

Robin K. S. Hankin

References

C. Perwass 2009. “Geometric algebra with applications in engineering”. Springer.

See Also

signature, const

Examples

a <- clifford(sapply(seq_len(7),seq_len),seq_len(7))
a
grades(a)
grade(a,5)

signature(2,2)
x <- rcliff()
drop(gradesplus(x) + gradesminus(x) + gradeszero(x) - grades(x))

a <- rcliff()
a == Reduce(`+`,sapply(unique(grades(a)),function(g){grade(a,g)}))

homog Homogenous Clifford objects

Description

A clifford object is homogenous if all its terms are the same grade. A scalar (including the zero
clifford object) is considered to be homogenous. This ensures that is.homog(grade(C,n)) always
returns TRUE.

Usage

is.homog(C)

Arguments

C Object of class clifford

18 horner

Note

Nonzero homogenous clifford objects have a multiplicative inverse.

Author(s)

Robin K. S. Hankin

Examples

is.homog(rcliff())
is.homog(rcliff(include.fewer=FALSE))

horner Horner’s method

Description

Horner’s method for Clifford objects

Usage

horner(P,v)

Arguments

P A Clifford object

v Numeric vector of coefficients

Details

Given a polynomial

p(x) = a0 + a1 + a2x
2 + · · ·+ anx

n

it is possible to express p(x) in the algebraically equivalent form

p(x) = a0 + x (a1 + x (a2 + · · ·+ x (an−1 + xan) · · ·))

which is much more efficient for evaluation, as it requires only n multiplications and n additions,
and this is optimal. The output of horner() depends on the signature().

Note

Horner’s method is not as cool for Clifford objects as it is for (e.g.) multivariate polynomials or
freealg objects. This is because powers of Clifford objects don’t get more complicated as the
power increases.

involution 19

Author(s)

Robin K. S. Hankin

Examples

horner(1+e(1:3)+e(2:3) , 1:6)

rcliff() |> horner(1:4)

involution Clifford involutions

Description

An involution is a function that is its own inverse, or equivalently f(f(x)) = x. There are several
important involutions on Clifford objects; these commute past the grade operator with f(⟨A⟩r) =
⟨f(A)⟩r and are linear: f(αA+ βB) = αf(A) + βf(B).

The dual is documented here for convenience, even though it is not an involution (applying the dual
four times is the identity).

• The reverse A∼ is given by rev() (both Perwass and Dorst use a tilde, as in Ã or A∼. How-
ever, both Hestenes and Chisholm use a dagger, as in A†. This page uses Perwass’s notation).
The reverse of a term written as a product of basis vectors is simply the product of the same
basis vectors but written in reverse order. This changes the sign of the term if the number of
basis vectors is 2 or 3 (modulo 4). Thus, for example, (e1e2e3)

∼
= e3e2e1 = −e1e2e3 and

(e1e2e3e4)
∼
= e4e3e2e1 = +e1e2e3e4. Formally, if X = ei1 . . . eik , then X̃ = eik . . . ei1 .

⟨A∼⟩r = ⟨̃A⟩r = (−1)r(r−1)/2 ⟨A⟩r

Perwass shows that ⟨AB⟩r = (−1)r(r−1)/2
〈
B̃Ã

〉
r

• The Conjugate A† is given by Conj() (we use Perwass’s notation, def 2.9 p59). This depends
on the signature of the Clifford algebra; see grade.Rd for notation. Given a basis blade eA
with A ⊆ {1, . . . , p+ q}, then we have e†A = (−1)meA

∼, where m = gr−(A). Alternatively,
we might say

(⟨A⟩r)
†
= (−1)m(−1)r(r−1)/2 ⟨A⟩r

where m = gr−(⟨A⟩r) [NB I have changed Perwass’s notation].

• The main (grade) involution or grade involution Â is given by gradeinv(). This changes the
sign of any term with odd grade:

⟨̂A⟩r = (−1)r ⟨A⟩r

(I don’t see this in Perwass or Hestenes; notation follows Hitzer and Sangwine). It is a special
case of grade negation.

20 involution

• The grade r-negation Ar is given by neg(). This changes the sign of the grade r component
of A. It is formally defined as A−2 ⟨A⟩r but function neg() uses a more efficient method. It is
possible to negate all terms with specified grades, so for example we might have ⟨A⟩{1,2,5} =

A−2 (⟨A⟩1 + ⟨A⟩2 + ⟨A⟩5) and the R idiom would be neg(A,c(1,2,5)). Note that Hestenes
uses “Ar” to mean the same as ⟨A⟩r.

• The Clifford conjugate A is given by cliffconj(). It is distinct from conjugation A†, and is
defined in Hitzer and Sangwine as

⟨A⟩r = (−1)r(r+1)/2 ⟨A⟩r .

• The dual C∗ of a clifford object C is given by dual(C,n); argument n is the dimension of the
underlying vector space. Perwass gives C∗ = CI−1

where I = e1e2 . . . en is the unit pseudoscalar [note that Hestenes uses I to mean something
different]. The dual is sensitive to the signature of the Clifford algebra and the dimension of
the underlying vector space.

Usage

S3 method for class 'clifford'
rev(x)
S3 method for class 'clifford'
Conj(z)
cliffconj(z)
neg(C,n)
gradeinv(C)

Arguments

C, x, z Clifford object

n Integer vector specifying grades to be negated in neg()

Author(s)

Robin K. S. Hankin

See Also

grade

Examples

x <- rcliff()
x
rev(x)

A <- rblade(g=3)
B <- rblade(g=4)
rev(A %^% B) == rev(B) %^% rev(A) # should be TRUE
rev(A * B) == rev(B) * rev(A) # should be TRUE

lowlevel 21

options(maxdim=8)
a <- rcliff(d=8)
dual(dual(dual(dual(a,8),8),8),8) == a # should be TRUE
options(maxdim=NULL) # restore default

lowlevel Low-level helper functions for clifford objects

Description

Helper functions for clifford objects, written in C using the STL map class.

Usage

c_identity(L, p, m)
c_grade(L, c, m, n)
c_add(L1, c1, L2, c2, m)
c_multiply(L1, c1, L2, c2, m, sig)
c_power(L, c, m, p, sig)
c_equal(L1, c1, L2, c2, m)
c_overwrite(L1, c1, L2, c2, m)
c_cartan(L, c, m, n)
c_cartan_inverse(L, c, m, n)

Arguments

L, L1, L2 Lists of terms
c1, c2, c Numeric vectors of coefficients
m Maximum entry of terms
n Grade to extract
p Integer power
sig Two positive integers, p and q, representing the number of +1 and −1 terms on

the main diagonal of quadratic form

Details

The functions documented here are low-level helper functions that wrap the C code. They are
called by functions like clifford_plus_clifford(), which are themselves called by the binary
operators documented at Ops.clifford.Rd. The functions documented here are not really intended
for day-to-day use.

Function c_identity() checks that the list of terms L is the same length as the vector coefficients
p; if not, an error is given. Note that R function clifford() will recycle the coefficient vector if of
length 1, so that clifford(list(1,1:2),7) works as expected (but c_identity(list(1,1:2),7,2)
will throw an error).

Function clifford_inverse() is problematic as nonnull blades always have an inverse; but func-
tion is.blade() is not yet implemented. Blades (including null blades) have a pseudoinverse, but
this is not implemented yet either.

22 magnitude

Value

The high-level functions documented here return an object of class clifford. But don’t use the
low-level functions.

Author(s)

Robin K. S. Hankin

See Also

Ops.clifford

magnitude Magnitude of a clifford object

Description

Following Perwass, the magnitude of a multivector is defined as

||A|| =
√
A ∗A

Where A ∗ A denotes the Euclidean scalar product eucprod(). Recall that the Euclidean scalar
product is never negative (the function body is sqrt(abs(eucprod(z))); the abs() is needed to
avoid numerical roundoff errors in eucprod() giving a negative value).

Usage

S3 method for class 'clifford'
Mod(z)

Arguments

z Clifford objects

Note

If you want the square, ||A||2 and not ||A||, it is faster and more accurate to use eucprod(A),
because this avoids a needless square root.

There is a nice example of scalar product at rcliff.Rd.

Author(s)

Robin K. S. Hankin

See Also

Ops.clifford, Conj, rcliff

minus 23

Examples

Mod(rcliff())

Perwass, p68, asserts that if A is a k-blade, then (in his notation)
AA == A*A.

In package idiom, A*A == A %star% A:

A <- rcliff()
Mod(A*A - A %star% A) # meh

A <- rblade()
Mod(A*A - A %star% A) # should be small

minus Take the negative of a vector

Description

Very simple function that takes the negative of a vector, here so that idiom such as

coeffs(z)[gradesminus(z)%%2 != 0] %<>% minus

works as intended (this taken from Conj.clifford()).

Usage

minus(x)

Arguments

x Any vector or disord object

Value

Returns a vector or disord

Author(s)

Robin K. S. Hankin

24 numeric_to_clifford

numeric_to_clifford Coercion from numeric to Clifford form

Description

Given a numeric value or vector, return a Clifford algebra element

Usage

numeric_to_clifford(x)
as.1vector(x)
is.1vector(x)
scalar(x=1)
as.scalar(x=1)
is.scalar(C)
basis(n,x=1)
e(n,x=1)

Arguments

x Numeric vector

n Integer specifying dimensionality of underlying vector space

C Object possibly of class Clifford

Details

Function as.scalar() takes a length-one numeric vector and returns a Clifford scalar of that value
(to extract the scalar component of a multivector, use const()).

Function is.scalar() is a synonym for is.real() which is documented at const.Rd.

Function as.1vector() takes a numeric vector and returns the linear sum of length-one blades
with coefficients given by x; function is.1vector() returns TRUE if every term is of grade 1.

Function numeric_to_vector() dispatches to either as.scalar() for length-one vectors or as.1vector()
if the length is greater than one.

Function basis() returns a wedge product of basis vectors; function e() is a synonym. There is
special dispensation for zero, so e(0) returns the Clifford scalar 1.

Function antivector() should arguably be described here but is actually documented at antivector.Rd.

Author(s)

Robin K. S. Hankin

See Also

getcoeffs,antivector,const,pseudoscalar

Ops.clifford 25

Examples

as.scalar(6)
as.1vector(1:8)

e(5:8)

Reduce(`+`,sapply(seq_len(7),function(n){e(seq_len(n))},simplify=FALSE))

Ops.clifford Arithmetic Ops Group Methods for clifford objects

Description

Different arithmetic operators for clifford objects, including many different types of multiplication.

Usage

S3 method for class 'clifford'
Ops(e1, e2)
clifford_negative(C)
geoprod(C1,C2)
clifford_times_scalar(C,x)
clifford_plus_clifford(C1,C2)
clifford_eq_clifford(C1,C2)
clifford_inverse(C)
cliffdotprod(C1,C2)
fatdot(C1,C2)
lefttick(C1,C2)
righttick(C1,C2)
wedge(C1,C2)
scalprod(C1,C2=rev(C1),drop=TRUE)
eucprod(C1,C2=C1,drop=TRUE)
maxyterm(C1,C2=as.clifford(0))
C1 %.% C2
C1 %dot% C2
C1 %^% C2
C1 %X% C2
C1 %star% C2
C1 % % C2
C1 %euc% C2
C1 %o% C2
C1 %_|% C2
C1 %|_% C2

26 Ops.clifford

Arguments

e1, e2, C, C1, C2 Objects of class clifford or coerced if needed

x Scalar, length one numeric vector

drop Boolean, with default TRUE meaning to return the constant coerced to numeric,
and FALSE meaning to return a (constant) Clifford object

Details

The function Ops.clifford() passes unary and binary arithmetic operators “+”, “-”, “*”, “/” and
“^” to the appropriate specialist function. Function maxyterm() returns the maximum index in the
terms of its arguments.

The package has several binary operators:

Geometric product A*B = geoprod(A,B) AB =
∑
r,s

⟨A⟩r ⟨B⟩s

Inner product A %.% B = cliffdotprod(A,B) A ·B =
∑
r ̸=0
s ̸=0

⟨⟨A⟩r ⟨B⟩s⟩|s−r|

Outer product A %^% B = wedge(A,B) A ∧B =
∑
r,s

⟨⟨A⟩r ⟨B⟩s⟩s+r

Fat dot product A %o% B = fatdot(A,B) A •B =
∑
r,s

⟨⟨A⟩r ⟨B⟩s⟩|s−r|

Left contraction A %_|% B = lefttick(A,B) A⌋B =
∑
r,s

⟨⟨A⟩r ⟨B⟩s⟩s−r

Right contraction A %|_% B = righttick(A,B) A⌊B =
∑
r,s

⟨⟨A⟩r ⟨B⟩s⟩r−s

Cross product A %X% B = cross(A,B) A×B =
1

2
(AB −BA)

Scalar product A %star% B = star(A,B) A ∗B =
∑
r,s

⟨⟨A⟩r ⟨B⟩s⟩0

Euclidean product A %euc% B = eucprod(A,B) A ⋆ B = A ∗B†

In R idiom, the geometric product geoprod(.,.) has to be indicated with a “*” (as in A*B) and so
the binary operator must be %*%: we need a different idiom for scalar product, which is why %star%
is used.

Because geometric product is often denoted by juxtaposition, package idiom includes a % % b for
geometric product.

Binary operator %dot% is a synonym for %.%, which causes problems for rmarkdown.

Function clifford_inverse() returns an inverse for nonnull Clifford objects Cl(p, q) for p+ q ≤
5, and a few other special cases. The functionality is problematic as nonnull blades always have
an inverse; but function is.blade() is not yet implemented. Blades (including null blades) have a
pseudoinverse, but this is not implemented yet either.

The scalar product of two clifford objects is defined as the zero-grade component of their geometric
product:

Ops.clifford 27

A ∗B = ⟨AB⟩0 NB: notation used by both Perwass and Hestenes

In package idiom the scalar product is given by A %star% B or scalprod(A,B). Hestenes and Per-
wass both use an asterisk for scalar product as in “A ∗ B”, but in package idiom, the asterisk is
reserved for geometric product.

Note: in the package, A*B is the geometric product.
The Euclidean product (or Euclidean scalar product) of two clifford objects is defined as

A ⋆ B = A ∗B† =
〈
AB†〉

0
Perwass

where B† denotes Conjugate [as in Conj(a)]. In package idiom the Euclidean scalar product is
given by eucprod(A,B) or A %euc% B, both of which return A * Conj(B).

Note that the scalar product A ∗A can be positive or negative [that is, A %star% A may be any sign],
but the Euclidean product is guaranteed to be non-negative [that is, A %euc% A is always positive or
zero].

Dorst defines the left and right contraction (Chisholm calls these the left and right inner product) as
A⌋B and A⌊B. See the vignette for more details.

Division, as in idiom x/y, is defined as x*clifford_inverse(y). Function clifford_inverse()
uses the method set out by Hitzer and Sangwine but is limited to p+ q ≤ 5.

The Lie bracket, [x, y] is implemented in the package using idiom such as .[x,y], and this is
documented at dot.Rd.

Many of the functions documented here use low-level helper functions that wrap C code. For
example, fatdot() uses c_fatdotprod(). These are documented at lowlevel.Rd.

Value

The high-level functions documented here return a clifford object. The low-level functions are
not really intended for the end-user.

Note

All the different Clifford products have binary operators for convenience including the wedge prod-
uct %^%. However, as an experimental facility, the caret “^” returns either multiplicative powers [as
in A^3=A*A*A], or a wedge product [as in A^B = A %^% B = wedge(A,B)] depending on the class of
the second argument. I don’t see that “A ^ B” is at all ambiguous but OTOH I might withdraw it if
it proves unsatisfactory for some reason.

Compare the stokes package, where multiplicative powers do not really make sense and A^B is
interpreted as a wedge product of differential forms A and B. In stokes, the wedge product is
the sine qua non for the whole package and needs a terse idiomatic representation (although there
A%^%B returns the wedge product too).

Using %.% causes severe and weird difficult-to-debug problems in markdown documents.

Author(s)

Robin K. S. Hankin

https://CRAN.R-project.org/package=stokes
https://CRAN.R-project.org/package=stokes

28 Ops.clifford

References

E. Hitzer and S. Sangwine 2017. “Multivector and multivector matrix inverses in real Clifford
algebras”. Applied Mathematics and Computation 311:375-389

See Also

dot

Examples

u <- rcliff(5)
v <- rcliff(5)
w <- rcliff(5)

u
v
u*v

u+(v+w) == (u+v)+w # should be TRUE by associativity of "+"
u*(v*w) == (u*v)*w # should be TRUE by associativity of "*"
u*(v+w) == u*v + u*w # should be TRUE by distributivity

Now if x,y are _vectors_ we have:

x <- as.1vector(sample(5))
y <- as.1vector(sample(5))
x*y == x%.%y + x%^%y
x %^% y == x %^% (y + 3*x)
x %^% y == (x*y-x*y)/2 # should be TRUE

above are TRUE for x,y vectors (but not for multivectors, in general)

Inner product "%.%" is not associative:
x <- rcliff(5,g=2)
y <- rcliff(5,g=2)
z <- rcliff(5,g=2)
x %.% (y %.% z) == (x %.% y) %.% z

Other products should work as expected:

x %|_% y ## left contraction
x %_|% y ## right contraction
x %o% y ## fat dot product
x ^ y ## Experimental wedge product idiom, plain caret

print 29

print Print clifford objects

Description

Print methods for Clifford algebra

Usage

S3 method for class 'clifford'
print(x,...)
S3 method for class 'clifford'
as.character(x,...)
catterm(a)

Arguments

x Object of class clifford in the print method

... Further arguments, currently ignored

a Integer vector representing a term

Note

The print method does not change the internal representation of a clifford object, which is a
two-element list, the first of which is a list of integer vectors representing terms, and the second
is a numeric vector of coefficients. The print method has special dispensation for the zero clifford
object.

The print method is sensitive to the value of options separate and basissep. If option separate
is FALSE (the default), the method prints the basis blades in a compact form, as in “e_134”. The
indices of the basis vectors are separated with the value of option basissep which is usually NULL;
but if n > 9, then setting option basissep to a comma (“,”) might look good as it will print
e_10,11,12 instead of e_101112:

options("basissep" = ",")

If option separate is TRUE, the method prints the basis vectors separately, as in e10 e11 e12:

options("separate" = TRUE)

Function catterm() is a low-level helper function, used in the print method, coercion to charac-
ter, and also in function getcoeffs() to set the names of its output. It takes an integer vector
like c(1,5,6) and returns a representation of the corresponding basis blade, in this case “e_156”.
Function catterm() is where options basissep and separate are processed. Special dispensation
is needed for length-zero vectors, for which the empty string is returned. This is needed to ensure
that the constant term (which has a basis blade of numeric(0)) is treated appropriately. See also
list_modifier() which deals with this issue.

30 pseudoscalar

Author(s)

Robin K. S. Hankin

See Also

clifford

Examples

a <- rclifff(9)
a # default print method incomprehensible

options("separate" = TRUE)
a # marginally better

options("separate" = FALSE)
options(basissep=",")
a # clearer; YMMV

options(basissep = NULL, maxdim=NULL) # restore default

pseudoscalar Coercion from numeric to Clifford form

Description

Given a numeric value or vector, return a Clifford algebra element

Usage

pseudoscalar()
is.pseudoscalar(C)

Arguments

C Object possibly of class Clifford

Details

Function pseudoscalar() returns the unit pseudoscalar of dimensionality option("maxdim") and
function is.pseudoscalar() checks for a Clifford object being a pseudoscalar. Note that these
functions require maxdim to be set; otherwise they are meaningless.

Usually, one will set option(maxdim) at the start of a session, together with the signature. Then
one might define I <- pseudoscalar() in the interests of compactness and legibility.

quaternion 31

Author(s)

Robin K. S. Hankin

See Also

getcoeffs,numeric_to_clifford,const

Examples

options(maxdim=6)
I <- pseudoscalar()
is.pseudoscalar(I)
options(maxdim=NULL) # restore default

quaternion Quaternions using Clifford algebras

Description

Converting quaternions to and from Clifford objects is not part of the package but functionality and
a short discussion is included in inst/quaternion_clifford.Rmd.

Details

Given a quaternion a+ bi+ cj + dk, one may identify i with −e12, j with −e13, and k with −e23
(the constant term is of course e0).

Note

A different mapping, from the quaternions to Cl(0, 2) is given at signature.Rd.

Author(s)

Robin K. S. Hankin

See Also

signature

32 rcliff

rcliff Random clifford objects

Description

Random Clifford algebra elements, intended as quick “get you going” examples of clifford ob-
jects

Usage

rcliff(n=9, d=6, g=4, include.fewer=TRUE)
rclifff(n=100,d=20,g=10,include.fewer=TRUE)
rblade(d=7, g=3)

Arguments

n Number of terms

d Dimensionality of underlying vector space

g Maximum grade of any term

include.fewer Boolean, with FALSE meaning to return a clifford object comprising only terms
of grade g, and default TRUE meaning to include terms with grades less than g
(including a term of grade zero, that is, a scalar)

Details

Function rcliff() gives a quick nontrivial Clifford object, typically with terms having a range of
grades (see ‘grade.Rd’); argument include.fewer=FALSE ensures that all terms are of the same
grade. Function rclifff() is the same but returns a more complicated object by default.

Function rblade() gives a Clifford object that is a blade (see ‘term.Rd’). It returns the wedge
product of a number of 1-vectors, for example (e1 + 2e2) ∧ (e1 + 3e5).

Perwass gives the following lemma:

Given blades A⟨r⟩, B⟨s⟩, C⟨t⟩, then

⟨A⟨r⟩B⟨s⟩C⟨t⟩⟩0 = ⟨C⟨t⟩A⟨r⟩B⟨s⟩⟩0

In the proof he notes in an intermediate step that

⟨A⟨r⟩B⟨s⟩⟩t ∗ C⟨t⟩ = C⟨t⟩ ∗ ⟨A⟨r⟩B⟨s⟩⟩t = ⟨C⟨t⟩A⟨r⟩B⟨s⟩⟩0.

Package idiom is shown in the examples.

Note

If the grade exceeds the dimensionality, g > d, then the result is arguably zero; rcliff() returns
an error.

rcliff 33

Author(s)

Robin K. S. Hankin

See Also

term,grade

Examples

rcliff()
rcliff(d=3,g=2)
rcliff(3,10,7)
rcliff(3,10,7,include=TRUE)

x1 <- rcliff()
x2 <- rcliff()
x3 <- rcliff()

x1*(x2*x3) == (x1*x2)*x3 # should be TRUE

rblade()

We can invert blades easily:
a <- rblade()
ainv <- rev(a)/scalprod(a)

zap(a*ainv) # 1 (to numerical precision)
zap(ainv*a) # 1 (to numerical precision)

Perwass 2009, lemma 3.9:

A <- rblade(d=9,g=4)
B <- rblade(d=9,g=5)
C <- rblade(d=9,g=6)

grade(A*B*C,0)-grade(C*A*B,0) # zero to numerical precision

Intermediate step

x1 <- grade(A*B,3) %star% C
x2 <- C %star% grade(A*B,3)
x3 <- grade(C*A*B,0)

max(x1,x2,x3) - min(x1,x2,x3) # zero to numerical precision

34 signature

signature The signature of the Clifford algebra

Description

Getting and setting the signature of the Clifford algebra

Usage

signature(p,q=0)
is_ok_sig(s)
showsig(s)
S3 method for class 'sigobj'
print(x,...)

Arguments

s, p, q Integers, specifying number of positive elements on the diagonal of the quadratic
form, with s=c(p,q)

x Object of class sigobj

... Further arguments, currently ignored

Details

The signature functionality is modelled on the lorentz package; clifford::signature() operates
in the same way as lorentz::sol() which gets and sets the speed of light. The idea is that both
the speed of light and the signature of a Clifford algebra are generally set once, at the beginning of
an R session, and subsequently change only very infrequently.

Clifford algebras require a bilinear form on Rn ⟨·, ·⟩, usually written

⟨x,x⟩ = x2
1 + x2

2 + · · ·+ x2
p − x2

p+1 − · · · − x2
p+q

where p+ q = n. With this quadratic form the vector space is denoted Rp,q and we say that (p, q)
is the signature of the bilinear form ⟨·, ·⟩. This gives rise to the Clifford algebra Cp,q .

If the signature is (p, q), then we have

eiei = +1 (if 1 ≤ i ≤ p),−1 (if p+ 1 ≤ i ≤ p+ q), 0 (if i > p+ q).

Note that (p, 0) corresponds to a positive-semidefinite quadratic form in which eiei = +1 for all
i ≤ p and eiei = 0 for all i > p. Similarly, (0, q) corresponds to a negative-semidefinite quadratic
form in which eiei = −1 for all i ≤ q and eiei = 0 for all i > q.

A strictly positive-definite quadratic form is specified by infinite p [in which case q is irrelevant],
and signature(Inf) implements this. For a strictly negative-definite quadratic form we would
have p = 0, q = ∞ which would be signature(0,Inf).

https://CRAN.R-project.org/package=lorentz

signature 35

If we specify eiei = 0 for all i, then the operation reduces to the wedge product of a Grassmann
algebra. Package idiom for this is to set p = q = 0 with signature(0,0), but this is not recom-
mended: use the stokes package for Grassmann algebras, which is much more efficient and uses
nicer idiom.

Function signature(p,q) returns the signature invisibly; but setting option show_signature to
TRUE makes signature() have the side-effect of calling showsig(), which changes the default
prompt to display the signature, much like showSOL in the lorentz package. There is special dis-
pensation for “infinite” p or q.

Calling signature() [that is, with no arguments] returns an object of class sigobj with ele-
ments corresponding to p and q. The sigobj class ensures that a near-infinite integer such as
.Machine$integer.max will be printed as “Inf” rather than, for example, “2147483647”.

Function is_ok_sig() is a helper function that checks for a proper signature. If we set signature(p,q),
then technically n > p+ q implies e2n = 0, but usually we are not interested in en when n > p+ q
and want this to be an error. Option maxdim specifies the maximum value of n, with default NULL
corresponding to infinity. If n exceeds this, is_ok_sig() throws an error. Note that it is fine to have
maxdim > p+q [and indeed this is useful in the context of dual numbers]. This option is intended to
be a super-strict safety measure.

> e(6)
Element of a Clifford algebra, equal to
+ 1e_6
> options(maxdim=5)
> e(5)
Element of a Clifford algebra, equal to
+ 1e_5
> e(6)
Error in is_ok_clifford(terms, coeffs) : option maxdim exceeded

Author(s)

Robin K. S. Hankin

Examples

signature()

e(1)^2
e(2)^2

signature(1)
e(1)^2
e(2)^2 # note sign

signature(3,4)
sapply(1:10,function(i){drop(e(i)^2)})

signature(Inf) # restore default

https://CRAN.R-project.org/package=stokes
https://CRAN.R-project.org/package=lorentz

36 summary.clifford

Nice mapping from Cl(0,2) to the quaternions (loading clifford and
onion simultaneously is discouraged):

library("onion")
signature(0,2)
Q1 <- rquat(1)
Q2 <- rquat(1)
f <- function(H){Re(H)+i(H)*e(1)+j(H)*e(2)+k(H)*e(1:2)}
f(Q1)*f(Q2) - f(Q1*Q2) # zero to numerical precision
signature(Inf)

summary.clifford Summary methods for clifford objects

Description

Summary method for clifford objects, and a print method for summaries.

Usage

S3 method for class 'clifford'
summary(object, ...)
S3 method for class 'summary.clifford'
print(x, ...)
first_n_last(x)

Arguments

object, x Object of class clifford

... Further arguments, currently ignored

Details

Summary of a clifford object. Note carefully that the “typical terms” are implementation specific.
Function first_n_last() is a helper function.

Author(s)

Robin K. S. Hankin

See Also

print

term 37

Examples

summary(rcliff())

term Deal with terms

Description

By basis vector, I mean one of the basis vectors of the underlying vector space Rn, that is, an
element of the set {e1, . . . , en}. A term is a wedge product of basis vectors (or a geometric product
of linearly independent basis vectors), something like e12 or e12569. Sometimes I use the word
“term” to mean a wedge product of basis vectors together with its associated coefficient: so 7e12
would be described as a term.

From Perwass: a blade is the outer product of a number of 1-vectors (or, equivalently, the wedge
product of linearly independent 1-vectors). Thus e12 = e1 ∧ e2 and e12 + e13 = e1 ∧ (e2 + e3) are
blades, but e12 + e34 is not.

Function rblade(), documented at ‘rcliff.Rd’, returns a random blade.

Function is.blade() is not currently implemented: there is no easy way to detect whether a Clif-
ford object is a product of 1-vectors.

Usage

terms(x)
is.blade(x)
is.basisblade(x)

Arguments

x Object of class clifford

Details

• Functions terms() and coeffs() are the extraction methods. These are unordered vectors
but the ordering is consistent between them (an extended discussion of this phenomenon is
presented in the mvp package).

• Function term() returns a clifford object that comprises a single term with unit coefficient.

• Function is.basisterm() returns TRUE if its argument has only a single term, or is a nonzero
scalar; the zero clifford object is not considered to be a basis term.

Author(s)

Robin K. S. Hankin

References

C. Perwass. “Geometric algebra with applications in engineering”. Springer, 2009.

38 zap

See Also

clifford,rblade

Examples

x <- rcliff()
terms(x)

is.basisblade(x)

a <- as.1vector(1:3)
b <- as.1vector(c(0,0,0,12,13))

a %^% b # a blade

zap Zap small values in a clifford object

Description

Generic version of zapsmall()

Usage

zap(x, drop=TRUE, digits = getOption("digits"))

Arguments

x Clifford object

drop Boolean with default TRUE meaning to coerce the output to numeric with drop()

digits number of digits to retain

Details

Given a clifford object, coefficients close to zero are ‘zapped’, i.e., replaced by ‘0’ in much the
same way as base::zapsmall().

The function should be called zapsmall(), and dispatch to the appropriate base function, but I
could not figure out how to do this with S3 (the docs were singularly unhelpful) and gave up.

Note, this function actually changes the numeric value, it is not just a print method.

Author(s)

Robin K. S. Hankin

zero 39

Examples

a <- clifford(sapply(1:10,seq_len),90^-(1:10))
zap(a)
options(digits=3)
zap(a)

a-zap(a) # nonzero

B <- rblade(g=3)
mB <- B*rev(B)
zap(mB)
drop(mB)

zero The zero Clifford object

Description

Dealing with the zero Clifford object presents particular challenges. Some of the methods need
special dispensation for the zero object.

Usage

is.zero(x)

Arguments

x Clifford object

Details

To test for a Clifford object’s being zero, use is.zero(). Idiom such as x==0 will work irregardless,
but sometimes one might prefer the functional form for stylistic reasons.

To create the zero object ab initio, use

clifford(list(),numeric(0))

although note that scalar(0) will work too.

Note

The coefficient of the zero clifford object, as in coeff(scalar(0)), is numeric(0) (but note that
1 + NULL also returns numeric(0)).

Function is.zero() is problematic if another package which also has an is.zero() generic is
loaded, for this will mask clifford::is.zero(). Specifically, the jordan package includes jordan::is.zero()
and the two do not play nicely together.

https://CRAN.R-project.org/package=jordan

40 zero

Author(s)

Robin K. S. Hankin

See Also

scalar

Examples

is.zero(rcliff())

Index

∗ math
summary.clifford, 36

∗ package
clifford-package, 2

∗ symbolmath
horner, 18

. (dot-class), 11
[,dot,ANY,ANY-method (dot-class), 11
[,dot,ANY,missing-method (dot-class), 11
[,dot,clifford,ANY,ANY-method

(dot-class), 11
[,dot,clifford,ANY-method (dot-class),

11
[,dot,matrix,matrix-method (dot-class),

11
[,dot,missing,ANY-method (dot-class), 11
[,dot,missing,missing-method

(dot-class), 11
[,dot-method (dot-class), 11
[.clifford (Extract.clifford), 13
[.dot (dot-class), 11
[<-.clifford (Extract.clifford), 13
% % (Ops.clifford), 25
%.% (Ops.clifford), 25
%X% (Ops.clifford), 25
%^% (Ops.clifford), 25
%dot% (Ops.clifford), 25
%euc% (Ops.clifford), 25
%o% (Ops.clifford), 25
%star% (Ops.clifford), 25

allcliff, 3
antivector, 4, 24
as.1vector, 5
as.1vector (numeric_to_clifford), 24
as.antivector (antivector), 4
as.character (print), 29
as.clifford (clifford), 8
as.cliffvector (numeric_to_clifford), 24
as.pseudoscalar (pseudoscalar), 30

as.scalar (numeric_to_clifford), 24
as.vector, 6

basis (numeric_to_clifford), 24
basissep (print), 29
blade (term), 37

c_add (lowlevel), 21
c_cartan (lowlevel), 21
c_cartan_inverse (lowlevel), 21
c_equal (lowlevel), 21
c_fatdotprod (lowlevel), 21
c_getcoeffs (lowlevel), 21
c_grade (lowlevel), 21
c_identity (lowlevel), 21
c_innerprod (lowlevel), 21
c_lefttickprod (lowlevel), 21
c_multiply (lowlevel), 21
c_outerprod (lowlevel), 21
c_overwrite (lowlevel), 21
c_power (lowlevel), 21
c_righttickprod (lowlevel), 21
cartan, 7
cartan_inverse (cartan), 7
catterm (print), 29
cliffconj (involution), 19
cliffdotprod (Ops.clifford), 25
clifford, 3, 7, 8, 10, 14, 30, 38
clifford-class (clifford), 8
clifford-package, 2
clifford_cross_clifford (Ops.clifford),

25
clifford_dot_clifford (Ops.clifford), 25
clifford_eq_clifford (Ops.clifford), 25
clifford_fatdot_clifford

(Ops.clifford), 25
clifford_inverse (Ops.clifford), 25
clifford_lefttick_clifford

(Ops.clifford), 25
clifford_negative (Ops.clifford), 25

41

42 INDEX

clifford_plus_clifford (Ops.clifford),
25

clifford_plus_numeric (Ops.clifford), 25
clifford_plus_scalar (Ops.clifford), 25
clifford_power_scalar (Ops.clifford), 25
clifford_righttick_clifford

(Ops.clifford), 25
clifford_star_clifford (Ops.clifford),

25
clifford_times_clifford (Ops.clifford),

25
clifford_times_scalar (Ops.clifford), 25
clifford_to_quaternion (quaternion), 31
clifford_wedge_clifford (Ops.clifford),

25
coeffs (Extract.clifford), 13
coeffs<- (Extract.clifford), 13
commutator (dot-class), 11
Conj, 22
Conj (involution), 19
conj (involution), 19
Conj.clifford (involution), 19
conjugate (involution), 19
const, 9, 12, 17, 24, 31
const<- (const), 9
constant (const), 9
constant<- (const), 9
cross (Ops.clifford), 25

dagger (involution), 19
dim (clifford), 8
dimension (clifford), 8
dot, 28
dot (dot-class), 11
dot-class, 11
dot_error (dot-class), 11
drop, 11
drop,clifford-method (drop), 11
drop_clifford (drop), 11
dual (involution), 19

e (numeric_to_clifford), 24
euclid_product (Ops.clifford), 25
euclidean_product (Ops.clifford), 25
eucprod (Ops.clifford), 25
even, 12
evenpart (even), 12
extract (Extract.clifford), 13
Extract.clifford, 13

fatdot (Ops.clifford), 25
first_n_last (summary.clifford), 36

geometric_prod (Ops.clifford), 25
geometric_product (Ops.clifford), 25
geoprod (Ops.clifford), 25
getcoeffs, 10, 24, 31
getcoeffs (Extract.clifford), 13
grade, 10, 13, 15, 20, 33
grade<- (grade), 15
gradeinv (involution), 19
grademinus (grade), 15
gradeplus (grade), 15
grades (grade), 15
gradesminus (grade), 15
gradesplus (grade), 15
gradeszero (grade), 15
gradezero (grade), 15

homog, 17
homogenous (homog), 17
horner, 18

Im (Extract.clifford), 13
involution, 19
involutions (involution), 19
is.1vector (numeric_to_clifford), 24
is.antivector (antivector), 4
is.basisblade (term), 37
is.blade (term), 37
is.clifford (clifford), 8
is.even (even), 12
is.homog (homog), 17
is.homogenous (homog), 17
is.minus (minus), 23
is.odd (even), 12
is.pseudoscalar (pseudoscalar), 30
is.real (const), 9
is.scalar (numeric_to_clifford), 24
is.zero, 10
is.zero (zero), 39
is.zero,ANY-method (zero), 39
is.zero,clifford-method (zero), 39
is.zero.clifford (zero), 39
is_ok_clifford (clifford), 8
is_ok_sig (signature), 34

jacobi (dot-class), 11

left_contraction (Ops.clifford), 25

INDEX 43

lefttick (Ops.clifford), 25
list_modifier (Extract.clifford), 13
lowlevel, 21

magnitude, 22
maxdim (signature), 34
maxyterm (Ops.clifford), 25
minus, 23
Mod (magnitude), 22
mod (magnitude), 22
Mod.clifford (magnitude), 22
mymax (signature), 34

nbits (clifford), 8
neg (involution), 19
nterms (clifford), 8
numeric_to_clifford, 6, 24, 31

oddpart (even), 12
Ops (Ops.clifford), 25
Ops.clifford, 9, 14, 22, 25

print, 29, 36
print.cliff (print), 29
print.clifford (print), 29
print.sigobj (signature), 34
print.summary.clifford

(summary.clifford), 36
pseudoscalar, 12, 24, 30

quaternion, 31
quaternion_to_clifford (quaternion), 31

rblade, 38
rblade (rcliff), 32
rcliff, 22, 32
rclifff (rcliff), 32
Re (Extract.clifford), 13
replace (Extract.clifford), 13
rev (involution), 19
reverse (involution), 19
right contraction (Ops.clifford), 25
righttick (Ops.clifford), 25

scalar, 40
scalar (numeric_to_clifford), 24
scalar_product (Ops.clifford), 25
scalprod (Ops.clifford), 25
showsig (signature), 34
sig (signature), 34

signature, 17, 31, 34
star (Ops.clifford), 25
summary.clifford, 36

term, 14, 33, 37
terms (term), 37
tilde (involution), 19

warn_on_repeats (Extract.clifford), 13
wedge (Ops.clifford), 25

zap, 38
zapsmall (zap), 38
zaptiny (zap), 38
zero, 39

	clifford-package
	allcliff
	antivector
	as.vector
	cartan
	clifford
	const
	dot-class
	drop
	even
	Extract.clifford
	grade
	homog
	horner
	involution
	lowlevel
	magnitude
	minus
	numeric_to_clifford
	Ops.clifford
	print
	pseudoscalar
	quaternion
	rcliff
	signature
	summary.clifford
	term
	zap
	zero
	Index

