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Abstract

This document constructs a minimal working example of a simple application of the
calibrator package, step by step. Datasets and functions have a .vig suffix, representing
“vignette”.
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1. Introduction

Package calibrator of bundle BACCO performs Bayesian calibration of computer models.
This document constructs a minimal working example of a simple problem, step by step.
Datasets and functions have a .int suffix, representing “intermediate”.
This document is not a substitute for Kennedy and O’Hagan (2001a) or Kennedy and O’Hagan
(2001b) or Hankin (2005) or the online help files in calibrator. It is not intended to stand
alone: for example, the notation used here is that of Kennedy and O’Hagan (2001a,b), and
the user should consult the online help in the calibrator package when appropriate. Here,
“online” means “The Rd files in an R package”.
This document is primarily didactic, although it is informal.
Nevertheless, many of the points raised here are duplicated in the online helpfiles.
Note that many of the objects created in this document are interdependent and changing one
sometimes implies changing many others.
The author would be delighted to know of any improvements or suggestions. Email me at
hankin.robin@gmail.com.
Observations are made over two parameters, x and y, which I style “latitude” and “longitude”.
I tend to think of the observation as temperature.
The model requires two parameters, A and B and, given these, gives output as a function of x
and y. The model is thus a function of four variables: x, y, A, B. Write θ = (A, B) to denote
the two parameters collectively. KOH use t to denote a specific value of parameters, and θ
to denote any old set of parameters one might like to consider.
Parameters A and B have true but unknown values and we wish to make inferences about
these true values.

mailto:hankin.robin@gmail.com
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2. List of objects that the user needs to supply
The user needs to supply several objects:

• Design matrices for the code runs and the field observations, here D1.int and D2.int.

• An extractor function to separate out the parameters from the independent variables,
here extractor.int()

• Various basis functions for the code runs (here h1.int() and H1.int()) and field ob-
servations (here h2.int() and H2.int())

• A function to create a hyperparameter object, here phi.fun.int()

• Two functions to return expectation under different distributions, here E.theta.int()
and Edash.theta.int()

• Data, here y.int for the code observations and z.int for the field observations, and
d.int for both together

Objects (data and functions) in the package follow a consistent nomenclature: anything that
ends in “.toy” is specific to the toy datasets, and a replacement needs to be supplied by the
user (in this vignette, the ending “.int” is used). Anything that does not end with “.toy”
is generic, in the sense that it will work for any application and does not need be supplied
by the user, and should not be altered. For example, hh.fun() is generic because it does not
end with .toy.

3. Design matrices
There are two design matrices to consider: D1.int, which is the code run set, and D2.int,
the observation points. Generating the data is deferred to section 6 because we need basis
functions (section 3) and hyperparameters (section 4) before we can specify the appropriate
distribution from which random can be drawn.
In this section, we will generate design matrices of arbitrary size. Data is generated in
section 7.
First, define the number of code observations (n1) and the number of field observations (n2):

> library("calibrator")

> do_from_scratch = FALSE
> n1 <- 20
> n2 <- 21

These can be varied at will. Now create the D1 matrix, of code observation points. This will
consist of

> D1.int <- latin.hypercube(n1,4)
> rownames(D1.int) <- paste("coderun",1:nrow(D1.int),sep=".")
> colnames(D1.int) <- c("x", "y", "A", "B")
> head(D1.int)
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x y A B
coderun.1 0.375 0.175 0.525 0.125
coderun.2 0.625 0.825 0.225 0.625
coderun.3 0.775 0.875 0.175 0.525
coderun.4 0.575 0.275 0.375 0.925
coderun.5 0.125 0.225 0.775 0.725
coderun.6 0.975 0.525 0.125 0.875

Notes

• Rownames and column-names are applied. They are not strictly necessary, but are very
useful in debugging.

• the points are randomly chosen (but fill parameter space reasonably)

• We have ten observation points. More can be added but at the cost of slower run times.

Now the field observation points. This is a two-column matrix, with an x column and a y
column.

> D2.int <- latin.hypercube(n2,2)
> rownames(D2.int) <- paste("obs",1:nrow(D2.int),sep=".")
> colnames(D2.int) <- c("x", "y")
> head(D2.int)

x y
obs.1 0.59523810 0.11904762
obs.2 0.07142857 0.30952381
obs.3 0.26190476 0.02380952
obs.4 0.64285714 0.21428571
obs.5 0.69047619 0.92857143
obs.6 0.45238095 0.69047619

Notes

• See how the number of observations (n1) is different from the number of code runs (n2)
as an additional safety check.

• Rownames and columnnames are given.

3.1. Extractor functions

Now we need a function to extract the variable part and the parameter part. Working by
analogy to extractor.toy():

> extractor.int <- function(D1){
+ return(list(x.star = D1[, 1:2, drop = FALSE], t.vec = D1[, 3:4, drop = FALSE]))
+ }
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Notes

• The function returns a two-element list, named x.star and t.vec.

• It just extracts the relevant columns: the first two give the lat and long, and columns
three and four give A and B

• drop=FALSE is needed to deal with one-row dataframes consistently.

4. Basis functions
We now need basis functions. The basis function h1.toy() is just a constant term with each
component. We will use a more sophisticated version.
Recall the fundamental equation of KOH:

z(x) = ρη(x, θ) + δ(x) + ϵ (1)

where z(x) is field observation, η(·, ·) a Gaussian process with unknown parameters represent-
ing a computer model taking two arguments: the first argument is the independent variable x,
and the second argument a vector of parameters with θ being the true but unknown value
of the parameters. The δ(x) part is a model inadequacy term, also a Gaussian process with
unknown parameters. The last term is an observational iid error with ϵ ∼ N(0, λ2).
We will take reality to be

x + y2 + y + xy + CE (2)

where CE is correlated error. Observations are reality plus uncorrelated N(0, λ2) error. The
model is

Ax + By2 + CE (3)

Here the A and B are parameters whose true but unknown values can be determined by
comparing equation 2 with equation 3. The values of A and B are thus 1 and 1 respectively;
write θ = (A, B) to denote the parameters collectively.
The model inadequacy term is thus

y + xy + CE

Note that this requires A = B = 1. We will take the model basis functions to be

h1(x, θ) = (1, x, A, Ax, By2)T (4)

Notes

• The model output will be
h1(x, θ)T β1 + CE

where β1 = (0, 0, 0, 1, 1)T is the true value of the coefficients; see section 7 for this in
use.
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• The basis functions could be much more complicated than that or, indeed, much simpler.
We could have chosen, for example, h1(x, θ) = (1, x, y, x2, y2, A, B, Ax, Ay, Bx, By, Ax2, Ay2, Bx2, By2)T ;
or, going the other way, h1(x, θ) = 1.

The model inadequacy term then has a mean of y + xy. The basis functions for the model
inadequacy is then

h2(x) = (y, xy)T (5)

and the model inadequacy then has a mean of

h2(x)β2

where β2 = (1, 1)T . Again note the great scope for choosing basis functions (although in the
case of h2() there are no parameters to consider).

4.1. Defining regressor functions

We need an h1.int():

> h1.int <- function(xin){
+ out <- c(1,xin[1],xin[3],xin[1]*xin[3], xin[2]^2*xin[4])
+ names(out) <- c("const" , "x", "A", "Ax" , "By.sq")
+ return(out)
+ }

Note how the argument xin is just c(x,theta), where x is the independent variables and
theta the model parameters. So xin[1] is x, xin[2] is y, xin[3] is A, and xin[4] is B. See
how function h1.int() creates the basis functions

(
1, x, A, Ax, By2))T , as per equation 4.

Now we need a vectorized version:

> H1.int <- function(D1){
+
+ if (is.vector(D1)) {
+ D1 <- t(D1)
+ }
+ out <- t(apply(D1, 1, h1.int))
+ colnames(out) <- c("const" , "x", "A", "Ax" , "By.sq")
+ return(out)
+ }

Notes

• Function H1.int is the one needed as arguments to functions like stage1(); function
h1.int() is not needed except from within H1.int().

• See how the columnnames are specified. Again, not strictly necessary but strongly
recommended

• See the special consideration for vector D1
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Similarly for the model inadequacy function:

> h2.int <- function(x){
+ out <- c(x[1],x[1]*x[2])
+ names(out) <- c("h2.x" ,"h2.xy")
+ return(out)
+ }
> H2.int <-
+ function (D2)
+ {
+ if (is.vector(D2)) {
+ D2 <- t(D2)
+ }
+ out <- t(apply(D2, 1, h2.int))
+ colnames(out) <- names(h2.int(D2[1, , drop = TRUE]))
+ return(out)
+ }

5. Hyperparameter object
We now need a function phi.fun.int() to create an appropriate hyperparameter object.
Note that function phi.change() is generic (so we don’t need to write one). The best way
to write phi.fun.int() is to proceed by analogy and modify function phi.fun.toy(), line
by line. Most of the function is straightforward to create. Note that the only parts that need
changing in this case are the internal functions pdm.maker.psi1() and pdm.maker.psi1();
I use “pdm" to denote “positive definite matrix". These two functions create positive-definite
matrices Ωx and Ωt that are used to determine c1 ((x, t), (x′, t′)). These are defined by:

> pdm.maker.psi1 <- function(psi1) {
+ jj.omega_x <- diag(psi1[1:2])
+ rownames(jj.omega_x) <- names(psi1[1:2])
+ colnames(jj.omega_x) <- names(psi1[1:2])
+ jj.omega_t <- diag(psi1[3:4],ncol=2)
+ rownames(jj.omega_t) <- names(psi1[3:4])
+ colnames(jj.omega_t) <- names(psi1[3:4])
+ sigma1squared <- psi1[5]
+ return(list(omega_x = jj.omega_x, omega_t = jj.omega_t,
+ sigma1squared = sigma1squared))
+ }
> pdm.maker.psi2 <- function(psi2) {
+ jj.omegastar_x <- diag(psi2[1:2],ncol=2)
+ sigma2squared <- psi2[3]
+ return(list(omegastar_x = jj.omegastar_x, sigma2squared = sigma2squared))
+ }

Notes
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• In function phi.fun.toy() there are two functions with the same name. They extract
from vectors psi1 and psi2 a positive definite matrix used in c1(·, ·) and c2((·, ·), (·, ·)).

• The purpose of all this is to implement the fact that Ωx and Ωt are arbitrary functions
of psi1. Here, it’s dead easy because the matrices are diagonal and the values just
correspond to consecutive elements of psi1 but in general there may be nonzero off-
diagonal elements of Ωx which may be a complicated function of psi1.

Given this, we can now change phi.int, using function phi.change(). Note that this func-
tion is generic, so we do not need to write another version. The best way to call phi.change()
is to define intermediate variables that begin with jj:

> jj.psi1 <- 1:5
> names(jj.psi1) <- c("x", "y", "A","B", "s1sq")
> jj.psi2 <- 1:3
> names(jj.psi2) <- c("x", "y", "s1sq")
> jj.mean1 <- rep(1,5)
> names(jj.mean1) <- names(jj.psi1)
> jj.sigma1 <- diag(c(1.1, 1.1, 1.2, 1.3, 1.1))
> rownames(jj.sigma1) <- names(jj.psi1)
> colnames(jj.sigma1) <- names(jj.psi1)
> jj.mean2 <- c(1,0.1,rep(1.1,3))
> names(jj.mean2) <- c("rho","lambda",names(jj.psi2))
> jj.sigma2 <- diag(c(1,0.2,1.1, 1.1, 1.2))/10
> rownames(jj.sigma2) <- names(jj.mean2)
> colnames(jj.sigma2) <- names(jj.mean2)
> jj.mean.th <- 1:2
> names(jj.mean.th) <- c("A","B")
> jj.sigma.th <- diag(c(1.5,1.7))
> rownames(jj.sigma.th) <- names(jj.mean.th)
> colnames(jj.sigma.th) <- names(jj.mean.th)

These variables may be passed directly to phi.fun.int():

> phi.int <-
+ phi.fun.int(rho=1,
+ lambda=1,
+ psi1 = jj.psi1,
+ psi2 = jj.psi2,
+ psi1.apriori = list(mean=jj.mean1,sigma=jj.sigma1),
+ psi2.apriori = list(mean=jj.mean2,sigma=jj.sigma2),
+ theta.apriori = list(mean=jj.mean.th,sigma=jj.sigma.th)
+ )
>

Notes:

• The purpose of the call to phi.fun.int() was to create a hyperparameter object, here
phi.int.
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• you only have to call this function, with all its complicated arguments, once. Save
the result in, say, jj and then use function phi.change(), which is generic, and much
simpler to use.

• The value for rho and lambda are just scalars

• psi1 and psi2 are structures, or named vectors (it’s always good practice to include
names). Vector psi1 has 5 elements: two for x and y, two for the parameters A and
B, and one for sigma1squared. Vector psi2 has three: two for x and y, and one for
sigma2squared.

• the priors are as expected. Remember that the apriori distributions are over psi1 or
psi2, not just the roughness lengths.

So now we have a working hyperparameter object phi.int, we can modify it with generic
function phi.change():

> phi.int2 <- phi.change(old.phi=phi.int, phi.fun=phi.fun.int, rho=3)
> print(phi.int2$rho)

[1] 3

Note that function phi.change() takes an old.phi argument, which is a working hyperpa-
rameter object to be modified. It also takes a phi.fun argument, which is the name of a
hyperparameter creation function, in this case phi.fun.int.

6. Functions E.theta.int() and Edash.theta.int()
The online help page for E.theta.toy() discusses how to create a new function for use in a
particular example.
We need to define functions E.theta.int() and Edash.theta.int(). These functions change
when the basis functions h1.int() and h2.int() change, because of possible nonlinearity.
The function E.theta.toy() is relatively simple because there the basis functions were linear
in θ, so in this case expectation commutes past taking the basis functions1

The first step is to examine function E.theta.toy():

> E.theta.toy

function (D2 = NULL, H1 = NULL, x1 = NULL, x2 = NULL, phi, give.mean = TRUE)
{

if (give.mean) {
m_theta <- phi$theta.apriori$mean
return(H1(D1.fun(D2, t.vec = m_theta)))

1This is not true in general. Consider a nonlinear case, for example h1(x, θ) = (1, A2x)T .
Now Eθ (h1(x, θ))T —that is, the expectation of (1, A2x)T under the prior distribution for θ—will be(

1, (A2 + σ2
A)x
)T

.
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}
else {

out <- matrix(0, 6, 6)
out[4:6, 4:6] <- phi$theta.apriori$sigma
return(out)

}
}
<bytecode: 0x56311c79c4d8>
<environment: namespace:calibrator>

The function is in two bits: one if give.mean is TRUE, and one for it being FALSE. If TRUE, it
returns H1() using the input value of D2 and θ (as determined from the a priori distribution).
If FALSE, it needs to return the matrix described in the help file2 which in this case is inde-
pendent of x1 and x2. This matrix is 6-by-6 because it is the same size as the variance matrix,
and that is 6-by-6 because h(x) = c(1,x) [recall that here x is a single row of a dataframe
like D1.toy—actually, it uses the output of D1.fun()—and this has five columns].
That was straightforward because the toy case included only linear basis functions. In the
intermediate case presented here, the basis functions are nonlinear so expectation will not
commute past h1.int(). Recall that function h1.int() includes a product:

> h1.int

function(xin){
out <- c(1,xin[1],xin[3],xin[1]*xin[3], xin[2]^2*xin[4])
names(out) <- c("const" , "x", "A", "Ax" , "By.sq")
return(out)
}

(thus h1 (x, θ) =
(
1, x, A, Ax, By2)T , as per section 4.1, page 5).

Observe that the fourth element of the output, viz xin[1]*xin[3], is nonlinear.
The fact that E(X2) ̸= (E(X))2 complicates the matrix returned by function E.theta.int()
(see ?E.theta.int for details of this matrix). But we may copy from function E.theta.toy()
and modify as necesary:

> E.theta.int <- function(D2 = NULL, H1 = NULL, x1 = NULL, x2 = NULL, phi, give.mean = TRUE)
+ {
+ if (give.mean) {
+ m_theta <- phi$theta.apriori$mean
+ return(H1(D1.fun(D2, t.vec = m_theta)))
+ }
+ else {
+ out <- matrix(0, 5, 5)
+ out[3,3] <- phi$theta.apriori$sigma[1,1]
+ out[3,4] <- phi$theta.apriori$sigma[1,1]*x1[1]

2Eθ(h · hT ) − Eθ(h) · Eθ(h)T . An example is given in the next footnote.
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+ out[4,3] <- phi$theta.apriori$sigma[1,1]*x2[1]
+ out[4,4] <- phi$theta.apriori$sigma[1,1]*x1[1]*x2[1]
+ out[5,5] <- phi$theta.apriori$sigma[2,2]*x1[2]*x2[2]
+ return(out)
+ }
+ }

Notes

• The object returned when give.mean is TRUE does not need changing, because h1.int()
is linear in A and B. If there were nonlinear terms there (such as A2) we would need to
add a variance.

• The online help for E.theta.toy() discusses the give.mean being FALSE part. Here,
we use the fact that the prior distribution has zero correlation between A and B. The
thing at the top of page 5 of the supplement should be

Eθ

(
h1 (xj , θ) · h1 (xj , θ)T

)
= Eθ


1 x A Ax By2

x x2 Ax Ax2 Bxy2

A Ax A2 A2x ABy2

Ax Ax2 A2x A2x2 ABxy2

By2 Bxy2 ABy2 ABxy2 B2y4

 (6)

which has value

1 x A Ax By2

x x2 Ax Ax2 Bxy2

A Ax A
2 + σ2

A

(
A

2 + σ2
A

)
x

(
A B + COV(A, B)

)
y2

Ax Ax2
(
A

2 + σ2
A

)
x

(
A

2 + σ2
A

)
x2

(
A B + COV(A, B)

)
xy

By2 Bxy2
(
A B + COV(A, B)

)
y2

(
A B + COV(A, B)

)
xy2

(
B

2 + σ2
B

)
y4


where an overline denotes expectation with respect to θ, and σ2

A denotes variance (with
respect to θ) of A. So the object to return (when give.mean is FALSE) is this, minus
Eθ (h1(x, θ)) Eθ (h1(x, θ))T as documented3. This would be


0 0 0 0 0
0 0 0 0 0
0 0 σ2

A σ2
Ax COV(A, B)y2

0 0 σ2
Ax σ2

Ax2 COV(A, B)xy
0 0 COV(A, B)y2 COV(A, B)xy σ2

By4


3Just for the record,

Eθ (h1(x, θ)) Eθ (h1(x, θ))T =


1 x A Ax By2

x x2 Ax Ax2 Bxy2

A Ax A
2

A
2
x A · By2

Ax Ax2 A
2
x A

2
x2 A · Bxy2

By2 Bxy2 A · By2 A · Bxy2 B
2
y4

 .
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We can now use the fact that E(XY ) = E(X)·E(Y ) if X and Y are independent random
variables. In this case, because the prior variance matrix (viz, jj.psi1.apriori) is
diagonal, the different terms are indeed independent. So the covariance is zero and the
matrix reduces to 

0 0 0 0 0
0 0 0 0 0
0 0 σ2

A σ2
Ax 0

0 0 σ2
Ax σ2

Ax2 0
0 0 0 0 σ2

By4


which is implemented in function E.theta.int() given above4

• There is probably a better way to return this matrix.

6.1. Function Edash.theta.int()

Function Edash.theta.int() returns expectation of h1(x, θ) with respect to the normal
distribution

N
(
(V −1

θ + 2Ωt)−1(V −1
θ Ωθ + 2Ωttk), (V −1

θ + 2Ωt)−1
)

(7)

Fortunately, E′
θ(h · hT ) is not required.

As the basis functions used are linear in theta5, expectation WRT the dashed distribution
commutes past the regressor function h1(·, ·). So we can just use the toy function:

> Edash.theta.int <- Edash.theta.toy

7. Data
4Returning to the nonlinear example given in the previous footnote, viz h = h1(x, θ) = (1, A2x)T . This

would have Eθ(h) =
(

1, x(A2 + σ2
A)
)T

and Eθ(h) · Eθ(h)T =

 1 x
(

A
2 + σ2

A

)
x
(

A
2 + σ2

A

)
x2
(

A
2 + σ2

A

)2

.

But what is needed by KOH is

Eθ

(
h · hT

)
= Eθ

(
1 A2x

A2x A4x2

)
=

 1 x
(

A
2 + σ2

A

)
x
(

A
2 + σ2

A

)
x2
(

A
4 + 6A

2
σ2

A + 3(σ2
A)2
)  .

The manpage for function E.theta.toy() says how, if argument give.mean is FALSE, the value returned
should be the thing that has to be added to Eθ(h) · Eθ(h)T to give Eθ

(
h · hT

)
. The motivation for considering

it this way is that E.theta.toy(...,give=FALSE) will return a zero matrix for basis functions linear in θ.
So, for this h(·, ·), function E.theta.int() would have to return the difference between Eθ

(
h · hT

)
and

Eθ(h) · Eθ(h)T , which would be

(
0 0
0 x2

(
4A

2
σ2

A + 2(σ2
A)2
) ).

5Returning to our nonlinear example, footnotes passim, viz h1(x, θ) = (1, xA2)T , we can see from equation 7
that E′

θ =
(
1, x
(
µ′2

A + σ′2
A

))T where µ′
A is the mean of the distribution in equation 7, that is, the first

element of the vector (V −1
θ + 2Ωt)−1(V −1

θ Ωθ + 2Ωttk), and σ′2
A is the variance—that is the top left element

of (V −1
θ + 2Ω−1

t ) (NB: this argument is true whether or not the variance matrix V θ and the positive definite
scales matrix Ωt are diagonal)
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We now generate some data: code runs, and observations.
This is done in order to test the routines: by generating data with known parameters and
hyperparameters we can verify that the package can reproduce at least approximately correct
values.
Consider the following equation, taken from KOH:

zi = ζ(xi) + ei = ρη (xi, θ) + δ(xi) + ei (8)

where zi is the i-th observation, ζ(xi) is the true value at point xi, ρ a calibration factor (of
notional value 1), η(·, ·) the code viewed as a function of observation point and parameter
value, θ the true but unknown set of parameters, and δ(·) the model inadequacy term, and
ei ∼ N (0, λ2) is an observational error term.
So, do the model first. Recall that the model is a Gaussian process and we have discussed
the mean in section 4. The variance matrix is given by function corr.matrix() of package
emulator. We know, ex cathedra, that A = B = 1:

> theta.TRUE <- c(1,1)

and we can specify beta1 and psi1:

> beta1.TRUE <- c(0,0,0,1,1)
> psi1.TRUE <- c(4,4,4,4,0.5)

Now we need to create a design matrix:

> two.designs <- rbind(D1.int,D1.fun(x.star=D2.int,t.vec=theta.TRUE))

Here, two.designs is a design matrix of n1+n2 rows; the first n1 rows of which are the code
observation points, and the last n2 rows are the field observation points but with the true
parameter value added.
Just have a look at the first three and last three lines:

> two.designs[c(1:3,(n1+n2):(n1+n2-2)),]

x y A B
coderun.1 0.3750000 0.1750000 0.525 0.125
coderun.2 0.6250000 0.8250000 0.225 0.625
coderun.3 0.7750000 0.8750000 0.175 0.525
obs.21 0.9285714 0.5000000 1.000 1.000
obs.20 0.1666667 0.7857143 1.000 1.000
obs.19 0.9761905 0.4047619 1.000 1.000

See how the block of 1.0s in the lower right corner corresponds to appending the true value
of θ to the design matrix.
The next step is to sample from the appropriate multivariate Gaussian distribution:
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> jj.mean <- H1.int(two.designs) %*% beta1.TRUE
> jj.sigma <- psi1.TRUE[5]*corr.matrix(two.designs, scales = psi1.TRUE[1:4])
> code.and.obs <- as.vector(rmvnorm(n=1,mean=jj.mean,sigma=jj.sigma))
> y.int <- code.and.obs[1:n1]
> z.int <- code.and.obs[(n1+1):(n1+n2)]
> names(y.int) <- rownames(D1.int)
> head(y.int)

coderun.1 coderun.2 coderun.3 coderun.4 coderun.5 coderun.6
1.2319239 0.5192366 0.7223136 -1.1593773 0.5488664 0.6726917

Notes

• The mean, jj.mean, is given by the linear combination of the regressor basis as discussed
in section 4

• The model η is a Gaussian process. The mean is specified, the variance matrix given
by the correlation function corr.matrix() of package emulator. The value for σ2

1 is
one (ie the fifth element of psi1.TRUE).

• Function rmvnorm() returns a matrix, which has to be converted to a vector.

• The names of y.int have to be specified explicitly.

• Observe how n=1 in the call to rmvnorm(). We are making a single observation of a
multivariate Gaussian distribution.

7.1. Observations and model inadequacy

To create reality, we have to generate model observations using the true but unknown param-
eter values.
We now have to add the model inadequacy term to z.int. First, specify the parameters and
hyperparameters of the model inadequacy:

> beta2.TRUE <- c(1,1)
> psi2.TRUE <- c(3,3,0.6)

Which give the true values. Now create model inadequacy:

> jj.mean <- drop(H2.int(D2.int) %*% beta2.TRUE)
> jj.sigma <- corr.matrix(D2.int, scales=psi2.TRUE[1:2])*psi2.TRUE[3]
> model.inadequacy <- rmvnorm(n=1, mean=jj.mean,sigma=jj.sigma)
> z.int <- as.vector(z.int + model.inadequacy)
> names(z.int) <- rownames(D2.int)

Notes
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• The overall purpose of the above code fragment is to create observations drawn from
the appropriate multivariate Gaussian distribution. The key is the fourth line, in which
the model observations cond.gp have model inadequacy added.

• Model inadequacy has two components: the mean (jj.mean), generated using the true
coefficients and the basis functions; and the correlated residual.

• The correlated error is added using rmvnorm() with a variance matrix generated by
corr.matrix().

• The correlated error is independent of the model runs, and in particular is not a function
of θ.

Now add observational error:

> lambda.TRUE <- 0.00
> jj.obs.error <- rnorm(n2)*lambda.TRUE
> z.int <- z.int + jj.obs.error
> head(z.int)

obs.1 obs.2 obs.3 obs.4 obs.5 obs.6
1.9279739 -0.4810720 0.8301995 2.3084815 4.7858120 2.7052171

Notes

• The observation errors are uncorrelated Gaussian with a mean of 0 and a variance of
0.1.

• Thus λ is 0.1

And finally we need to create a full data vector d.int

> d.int <- c(y.int , z.int)

8. Intermediate results
We now use some functions that are part of the BACCO bundle.
Note that the numbers given above will vary from instantiation to instantiation.
OK, so let’s change the hyperparameter object to contain the true values:

> phi.true <- phi.change(phi.fun=phi.fun.int, old.phi=phi.int,
+ psi1=psi1.TRUE, psi2=psi2.TRUE,lambda=0.1,rho=1)

and then use these hyperparameters to estimate the coefficients:

> betahat.fun.koh(theta=theta.TRUE, d=d.int, D1=D1.int, D2=D2.int, H1=H1.int, H2=H2.int, phi=phi.true)
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[,1]
const -0.09753597
x 0.04722316
A 0.41530540
Ax 1.22456024
By.sq 0.79420322
h2.x 2.68432240
h2.xy 0.58913875

(note the last argument to betahat.fun.koh()).
We know the correct answer should be c(beta1.TRUE,beta2.TRUE)=c(0,0,0,1,1,1,1), so
there is evidently a lot of scatter. Try redefining psi1.TRUE and psi2.TRUE so that the
variance (ie the last element of each vector) is smaller. Or for that matter, using a larger
value of n1 in section 3.
Just as a point of interest, we will estimate the betas but using the wrong parameters (recall
that in practice, the parameters’ true value is not known).

> betahat.fun.koh(theta=c(-5,5), d=d.int, D1=D1.int, D2=D2.int, H1=H1.int, H2=H2.int, phi=phi.true)

[,1]
const 0.1945920
x -0.1585933
A 0.1695710
Ax 1.3658975
By.sq 0.2387014
h2.x 12.3045396
h2.xy -0.2877655

This is far from the true values because we have used a very inaccurate value for theta.

8.1. Calibration

As a bit of fun, we can use equation 8 of the supplement, implemented in BACCO by
p.eqn8.supp(). This equation gives the probability of theta, given d and psi. Note that
this formula is conditional on the correct hyperparameters psi, so we will use phi.true.

> p.eqn8.supp(theta=c(1,1), D1=D1.int, D2=D2.int, H1=H1.int, H2=H2.int, d=d.int, phi=phi.true)

[1] 8301.102

(Recall that this function gives a number proportional to the true probability). Now try a
different value for theta:

> p.eqn8.supp(theta=c(5,-6), D1=D1.int, D2=D2.int, H1=H1.int, H2=H2.int, d=d.int, phi=phi.true)

[1] 180.1584
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See how this is lower, because the value of theta is unlikely to be the true one. So we could use
a maximum likelihood estimator (which would have to use numerical optimization techniques)
to estimate theta, if we knew the correct values to use for the hyperparameters.
In practice, the hyperparameters are not known in advance. Estimating them is the subject
of the next section.

9. Estimating the hyperparameters
The BACCO bundle includes two functions to automate the determination of the hyperparam-
eters: stage1() and stage2(). The bundle also includes a stage3() function which gives a
MLE for theta (but no such stage3 appears in KOH).
The function calls in this section are very computationally intensive and the calls include a
number of timesaving features (such as very short optimization) that degrade the quality of
the predictions.
These features are discussed where appropriate but the user is advised to fiddle with them to
get better results. YMMV.

9.1. Stage 1

KOH proposed estimating the hyperparameters in two stages. Stage 1 used just the code out-
put data y to estimate psi1. In the calibrator bundle, this is accomplished by stage1():

> phi.stage1 <- stage1(D1=D1.int, y=y.int, H1=H1.int, maxit=10,
+ method="SANN", trace=0, do.print=FALSE, phi.fun=phi.fun.int,
+ phi=phi.int)

Notes

• Function stage1() returns a hyperparameter object, which contains optimized value
for psi1.

• The method used is simulated annealing, because with maxit=1 it finishes very quickly.

• The function takes a hyperparameter object, in this case phi.int.

• By default, function stage1() maximizes the posterior probability, so the prior (which
is part of the hyperparameter object) makes a difference.

We can examine the output of stage1() directly:

> phi.stage1$psi1

x y A B s1sq
0.640524 0.334975 2.411720 1.540624 3.520453

Recall that phi.stage1$psi1 is a vector of free parameters that are used to calculate c1(x, x′).
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Further recall that c1 ((x, t), (x′, t′)) = σ2
1 exp

{
−(x − x′)T Ωx(x − x′) − (t − t′)T Ωt(t − t′)

}
where σ2

1, and Ωx and Ωt are positive definite matrices that are functions of psi1.
In this case we have

> phi.stage1$sigma1squared

s1sq
3.520453

> phi.stage1$omega_x

x y
x 0.640524 0.000000
y 0.000000 0.334975

> phi.stage1$omega_t

A B
A 2.41172 0.000000
B 0.00000 1.540624

9.2. Stage 2

Stage 2 is the estimation of ρ, λ, and psi2. This is accomplished by function stage().
NB: stage 2 is very computationally intensive!
OK, use stage2():

> use1 <- 1:10
> use2 <- 1:11
> phi.stage2 <- stage2(D1=D1.int[use1,], D2=D2.int[use2,], H1=H1.int, H2=H2.int,
+ y=y.int[use1], z=z.int[use2], extractor=extractor.int,
+ phi.fun=phi.fun.int, E.theta=E.theta.int, Edash.theta=Edash.theta.int,
+ maxit=1, method="SANN", phi=phi.stage1)

x y s1sq
0.0000000 0.0000000 0.0000000 0.6931472 1.0986123
[1] -40.85497
sann objective function values
initial value 40.854972
final value 40.854972
sann stopped after 0 iterations

Notes

• This function takes a long long long time to run, and is very computationally slow.
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• The function uses only the first 10 code runs and the first 11 field observations. You
can change this by modifying use1 and use2 in the above chunk.

• The above function call is an absolute minimum working model. It uses SANN with
only one function evaluation.

• The start point is the output from stage1(), viz phi.stage1.

• The purpose of function stage2() is to optimize the posterior probability of the hyper-
parameters rho, lambda, sigma2squared, and the lengthscales for c2(·, ·).

The modified hyperparameters are

> phi.stage2$rho

[1] 1

> phi.stage2$lambda

1

> phi.stage2$sigma2squared

s1sq
3

> phi.stage2$psi2

x y s1sq
1 2 3

(although, given the extremely short optimization run above, these parameters may well not
be different from the original).

10. Calibrated prediction
Function EK.eqn10.supp() carries out calibrated prediction as per section 4.2 of KOH2. It
should come as no surprise that

• The R code is complicated and impenetrable

• The function arguments are tedious, error-prone, and complicated

• The mathematics are complicated and impenetrable

• The numerics take an interminably long time to complete

• Even with the simplest case possible, accurate results require more computing power
than is available in the entire universe.
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. . . but, it is implemented.
The integration is carried out by function adaptIntegrate() of the cubature package.
The first step is to read help(EK.eqn10.supp), which gives a working example.
There are two arguments that are not covered above. The first is X.dist and the second is
hbar. These are discussed in the online help pages.
For X.dist, we need to define an uncertainty distribution on the independent variables.
Working from X.dist.toy, we may copy it directly:

> jj.xdist.mean <- rep(0.5,2)
> names(jj.xdist.mean) <- c("x","y")
> jj.xdist.var <- 0.05+diag(c(0.1,0.1))
> rownames(jj.xdist.var) <- c("x","y")
> colnames(jj.xdist.var) <- c("x","y")
> X.dist.int <- list(mean=jj.xdist.mean,var=jj.xdist.var)

thus defining a Gaussian uncertainty distribution for X. We now need a function hbar. The
manpage discusses this and gives an example. Note that the example is excruciatingly simple
because there the basis functions are linear in x. And in the intermediate case they are not.
To write a suitable function, we need to remind ourselves what the basis functions h1.int()
and h2.int() are. Look back at equations 4 and 5.
Take the top bit first. This is ρEX {h1(x, θ)}, that is, expectation with respect to X.dist.
Recall that h1(x, θ) = (1, x, A, Ax, By2)T , so the top bit is

ρEX

(
1, x, A, Ax, By2

)T
= ρ

(
1, x, A, Ax, B

(
y2 + σ2

y

))T
(9)

where the overline refers to expectation with respect to X.dist. The bottom bit is EX {h2(x)},
which is (recall that h2(x) = (x, xy)T ):

EX (x, xy)T = (x, x · y + COV(x, y))T (10)

and we can use the fact that X.dist.int specifies zero correlation between the two indepen-
dent variables’ uncertainty distribution to reduce this to

(x, x · y)T

OK, using the toy example as a guide, we can define a working hbar.fun.int():

> hbar.fun.int <-
+ function (theta, X.dist, phi)
+ {
+ if (is.vector(theta)) {
+ theta <- t(theta)
+ }
+ first.bit <- phi$rho * H1.int(D1.fun(X.dist$mean, theta))
+ first.bit[,5] <- first.bit[,5] + theta[,2]*X.dist$var[2,2]
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+ second.bit <- H2.int(X.dist$mean)
+ jj.names <- colnames(second.bit)
+ second.bit <- kronecker(second.bit, rep(1, nrow(first.bit)))
+ colnames(second.bit) <- jj.names
+ return(t(cbind(first.bit, second.bit)))
+ }

notes

• See how the fifth column of first.bit has to have a component for the variance added,
to match the variance term in equation 9.

• There is no such addition to second.bit because the random variables in X.dist.int
have zero correlation.

• Everything else just follows from hbar.fun.toy().

Now we can conduct a calibrated prediction:

EK.eqn10.supp(X.dist=X.dist.int, D1=D1.int, D2=D2.int,
H1=H1.int, H2=H2.int, d=d.int, hbar.fun=hbar.fun.int,
lower.theta=c(-3,-3), upper.theta=c(3,3),
extractor=extractor.int,
phi=phi.stage2,eps=0.8)

[1] 1.956333

Notes

• We use the optimized value for phi, that is phi.stage2 (not the true value).

• I have set eps to 0.8, as adapt() is very slow with the default settings.

11. Metropolis-Hastings
The Metropolis-Hastings method allows one to sample from a PDF that is only specified up
to a constant. It is useful for posterior PDFs of the type given by equation 8 of the supplent
(p.eqn8.supp() in the package: only a likelihood is given.
See the manpage for MH.Rd for examples of the Metropolis-Hastings method in use.
For ease of use, we will define a wrapper:

> p <- function(theta){
+ p.eqn8.supp(theta=theta, D1=D1.int, D2=D2.int, H1=H1.int, H2=H2.int, d=d.int, phi=phi.true)
+ }
> p(c(1,1))

[1] 8301.102
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> p(c(10,10))

[1] 62.97809

So, let’s sample from it:

> ss <- MH(n=10,start=c(1,1),sigma=diag(2),pi=p)

Figure 1 shows a sample of size 10 from the posterior.

> plot(jitter(ss),xlab="A",ylab="B",main="Sample from posterior: try with more points")

−1.5 −1.0 −0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0
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5

Sample from posterior: try with more points

A

B

Figure 1: Sample from the posterior distribution of theta, made using the Metropolis-Hastings
method
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