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Abstract

We present two natural generalizations of the multinomial and multivariate binomial
distributions, which arise from the multiplicative binomial distribution of Altham (1978).
The resulting two distributions are discussed and we introduce an R package, MM, which
includes associated functionality.

This vignette is based on Altham and Hankin (2012).
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1. Introduction
The uses of the binomial and multinomial distributions in statistical modelling are very well
understood, with a huge variety of applications and appropriate software, but there are plenty
of real-life examples where these simple models are inadequate. In the current paper, we first
remind the reader of the two-parameter exponential family generalization of the binomial
distribution first introduced by Altham (1978) to allow for over- or under-dispersion:

P (Z = j) =
(

n

j

)
pjqn−jθj(n−j)

/
f(p, θ, n) j = 0, . . . , n (1)

where

f(p, θ, n) =
n∑

j=0

(
n

j

)
pjqn−jθj(n−j). (2)

Here, 0 ⩽ p ⩽ 1 is a probability, p + q = 1, and θ > 0 is the new parameter which controls
the shape of the distribution; the standard binomial Bi(n, p) is recovered if θ = 1. Altham
points out that this distribution is more sharply peaked than the binomial if θ > 1, and more
diffuse if θ < 1. As far as we are aware, no other generalization has this type of flexibility;
for example, the beta-binomial distribution (Johnson, Kemp, and Kotz 2005) only allows for
over-dispersion relative to the corresponding binomial distribution.
We then introduce two different generalizations, both of which are of exponential family form.
We call these:
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The multivariate multinomial distribution
Take non-negative integers y1, . . . , yk ⩾ 0 with

∑
yi = y, a fixed integer. Then suppose

that the probability mass function of Y1, . . . , Yk is

P(y1, . . . , yk) = C−1
(

y

y1 . . . yk

)
k∏

i=1
pyi

i

∏
1⩽i<j⩽k

θij
yiyj (3)

where the free parameters are p = (p1, . . . , pk) and θ = θij , with pi ⩾ 0 for 1 ⩽ i ⩽ k,∑
pi = 1, and θij > 0 for 1 ⩽ i < j ⩽ k [these restrictions on i, j understood henceforth].

Here C = C (y, p, θ) is a normalization constant. Thus the standard multinomial is
recovered if θij = 1, and in this case C = 1.

The multivariate multiplicative binomial distribution
For simplicity of notation, we restrict attention to the bivariate case. The proposed
frequency function P (X1 = x1, X2 = x2) = f (x1, x2) is

f (x1, x2) = C−1
(

m1
x1 z1

)
px1

1 qz1
1 θx1z1

1 ·
(

m2
x2 z2

)
px2

2 qz2
2 θx2z2

2 · ϕx1x2 (4)

where pi + qi = 1 and xi + zi = mi, i = 1, 2; all parameters are strictly positive
and C is again a normalization constant. Thus X1, X2 are independent iff ϕ = 1.
Furthermore, if ϕ = 1, then θ1 = θ2 = 1 corresponds to X1, X2 independent Binomial:
Xi ∼ Bi (mi, pi).

We then introduce an R (R Development Core Team 2011) package MM which implements
some functionality for these distributions. Because of their simple exponential family forms,
both these distributions may be fitted to appropriate count data by using the glm() R func-
tion with the Poisson distribution and log link function. This follows from the ingenious result
of Lindsey and Mersch (1992), and has the very important consequence that the computa-
tionally expensive normalizing constants in Equations 3 and 4 above need never be evaluated.
Both these distributions are clearly exponential family-type distributions (Cox and Hinkley
1974), and may be seen as discrete analogues of the multivariate normal distribution in the
following two respects, which we illustrate only for the multiplicative multinomial distribution.
Firstly, suppose we have observed frequencies n (y1, . . . , yk) with

∑
yi = y, then the log

likelihood of this dataset may be written as∑
n (y1, . . . , yk) log P (y1, . . . , yk) . (5)

where the summation is over y1, . . . , yk ⩾ 0 with
∑

yi = y. This gives rather simple expres-
sions, essentially the sample mean and sample covariance matrix of the vector (y1, . . . , yk),
for the minimal sufficient statistics of this exponential family. Hence, by standard theory for
exponential families, at the maximum likelihood value of the parameters, the observed and
fitted values of the minimal sufficient statistics will agree exactly.
Secondly, as we show later, each of the distributions given in Equations 3 and 4 is reproductive
under conditioning on components.
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1.1. A probabilistic derivation of the Multiplicative Multinomial

It is possible to consider the MM distribution from the perspective of contingency tables,
which for simplicity we will carry out for k = 3, y = 4: The general case is notationally
challenging.
Our preferred interpretation is drawn from the field of psephology: Consider a household
of 4 indistinguishable voters, each of whom votes for exactly one of 3 political parties, say
℘1, ℘2, ℘3. Let y1, y2, y3 be the total number of votes obtained from this household for
℘1, ℘2, ℘3 respectively, and so y1 + y2 + y3 = 4.
The 4 voters in the household may be considered as corresponding to the rows, columns,
layers and the 4th dimension of a 3 × 3 × 3 × 3 contingency table, with cell probabilities Pijhl

for 1 ⩽ i, j, h, l ⩽ 3, which we will assume have the following symmetric form

Pijhl = 1
C ′ · pipjphpl · θijθihθilθjhθjlθhl (6)

where θrs = θsr for s, r ∈ {i, j, h, l} [notation is analogous to that used in Equation 8 of Altham
(1978), with θ written for ϕ], and without loss of generality θrr = 1.
The parameters θij may be interpreted in terms of conditional cross-ratios. Recalling that Pijhl =
Pijlh = . . . = Plhji we have, for example:

P12hl P21hl

P11hl P22hl
= θ2

12 for each h, l. (7)

By enumerating the possible voting results for a given family of size 4, we may find the
resulting joint distribution of (Y1, Y2, Y3), where random variable Yi is the household total
of votes for party ℘i, i = 1, 2, 3. For example, P (Y1 = 4, Y2 = 0, Y3 = 0) = 1

C′ · p4
1 is the

probability that all 4 members of the household vote for ℘1. Similarly, P(Y1 = 3, Y2 = 1, Y3 =
0) = 1

C′ · 4p3
1p1

2θ3
12 is the probability that 3 members of the household vote for ℘1 and the

remaining 1 member votes for ℘2.
This clearly corresponds to the given Multiplicative Multinomial distribution, so C = C ′. We
return to this example with a synthetic dataset in Section 3.1 below.

1.2. Marginal and conditional distributions

There does not appear to be an elegant expression for the marginal distribution of (Y1, . . . , Yr)
where r < k. However, the multiplicative multinomial behaves ‘elegantly’ under conditioning
on a subset of the variables (Y1, . . . , Yk). For example,

P (y1, y2| y3, . . . , yk) ∝ ϕy1
1 ϕy2

2 θy1y2
12

y1!y2! , y1 + y2 = y −
k∑

i=3
yi (8)

where
ϕ1 = p1θy3

13 . . . θyk
1k ϕ2 = p2θy3

23 . . . θyk
2k . (9)

Hence the distribution of Y1, conditional on the values of (y3, . . . , yk) is multiplicative binomial
in the sense of Altham (1978). Similarly, the distribution of (Y1, . . . , Yν), conditional on the
values of (yν+1, . . . , yk) is multiplicative multinomial in the sense defined above.
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1.3. The normalization constant

The constant C in Equation 3 must be determined by numerical means:

C =
∑

y1+...+yk=y

(
y

y1 . . . yk

)
k∏

i=1
pyi

i

∏
1⩽i<j⩽k

θij
yiyj . (10)

Although this is provided in the MM package [function NormC()], it is computationally ex-
pensive and difficult to evaluate for all but small k and y.

1.4. The Poisson method for fitting distributions with an intractable nor-
malizing constant

The parameters (p, θ) may be estimated without determining the normalizing constant C
by transforming the problem into a Generalized Linear Model. The method presented here
follows Lindsey and Mersch (1992); for simplicity of notation we take k = 3. Equation 3 is
equivalent to

log P (y1, y2, y3) = µ +
∑

yi log pi +
∑
i<j

yi · yj log θij + offset [y1, y2, y3] (11)

where offset [y1, y2, y3] = −
∑

log (yi!) accounts for the multinomial term on the right hand
side. The log-likelihood L of the dataset n (y1, y2, y3) is given by

L =
∑

y1+y2+y3=y

n (y1, y2, y3) log P (y1, y2, y3) . (12)

Thus, treating n (y1, y2, y3) as independent Poisson variables with parameters1 given by Equa-
tion 11, we may fit the parameters of Equation 3 using glm(..., family=poisson), using
the canonical log link function, and regressing n (y1, y2, y3) on the variables

y1, y2, y3, y1y2, y1y3, y2y3.

With obvious notation, the R idiom is

glm(n ~ -1+offset(Off) + y1 + y2 + y3
+ y1:y2 + y1:y3 + y2:y3,
family = poisson)

(recall that y1 + y2 + y3 = y, fixed), which is given by function Lindsey() in the package.
1The distribution of independent Poisson random variables conditional on their total is multinomial with

probabilities equal to the scaled Poisson parameters. If Xi ∼ Po(λi), then elementary considerations show

P

(
X1 = x1, . . . , Xk = xk

∣∣∣∣∣∑
i

xi = N

)
=
(

N

x1, . . . , xk

)∏(
λi∑
i
λi

)xi

,

the right hand side being recognisable as a multinomial distribution. Given that the distribution is of the
exponential family, it is the case that

∑
n =

∑
λ̂i, the normalizing constant is not needed.
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1.5. Multivariate multiplicative binomial

Considering the bivariate case for simplicity, suppose (X1, X2) to be non-negative integers
not exceeding known fixed maxima m1, m2 respectively.
We introduce a 5-parameter distribution of exponential family form. In common with the
multiplicative binomial, it has the property that at the maximum likelihood values of these
parameters, the observed and fitted values of the means of Xi, i = 1, 2 will agree exactly,
and similarly for the observed and fitted values of the covariance matrix of X1, X2. This
distribution is easy to fit to frequency data (again using the Lindsey and Mersch Poisson
device). The distribution has some nice properties, but there do not appear to be simple
formulæ for its moments.
The proposed frequency function P (X1 = x1, X2 = x2) = f (x1, x2) is

f (x1, x2) = C−1
(

m1
x1 z1

)
px1

1 qz1
1 θx1z1

1 ·
(

m2
x2 z2

)
px2

2 qz2
2 θx2z2

2 · ϕx1x2 (13)

where pi + qi = 1 and xi + zi = mi; all parameters are strictly positive.
Here, C is the normalization constant:

C =
∑

x1+z1=m1

∑
x2+z2=m2

(
m1

x1 z1

)
px1

1 qz1
1 θx1z1

1 ·
(

m2
x2 z2

)
px2

2 qz2
2 θx2z2

2 · ϕx1x2 (14)

Thus X1, X2 are independent iff ϕ = 1. As already noted, if ϕ = 1, then θ1 = θ2 = 1
corresponds to X1, X2 independent Binomial: Xi ∼ Bi (mi, pi).
Although there does not seem to be a simple expression for the correlation between X1 and X2,
it is easily seen that ϕ controls their interdependence in a likelihood ratio fashion, with

f(x1, x2) f(x1 + 1, x2 + 1)
f(x1 + 1, x2) f(x1, x2 + 1) = ϕ. (15)

Indeed, following Lehmann (1966) we can prove a much stronger statement: The vari-
ables X1, X2 are positive monotone likelihood ratio dependent2 for ϕ > 1, negative if ϕ < 1.
The conditional distribution is again of multiplicative binomial form, since we can write

P (X1 = x1|X2 = x2) ∝
(

m1
x1 z1

)
(p1ϕx2)x1 qz1

1 θx1z1
1 . (16)

2. The MM package
The MM package associated with this article provides R functionality for assessing the mul-
tiplicative multinomial and multivariate binomial. We have provided user-friendly wrappers
to expedite use of the distributions in a data analysis setting.

2Random variables X1, X2 are positive monotone likelihood ratio dependent if f(x1, x′
2)f(x′

1, x2) ⩽
f(x1, x2)f(x′

1, x′
2) for all x1 < x′

1, x2 < x′
2, and negative monotone likelihood ratio dependent if the inequality

is reversed.
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The MM package uses an object-oriented approach: The set of free parameters (one vector,
one upper-diagonal matrix) is not a standard R object, and is defined to be an object of S4
class paras. The objects thus defined are user-transparent and a number of manipulation
methods are provided in the package.
For example, consider Equation 3 with k = 5 and pi = 1

5 , 1 ⩽ i ⩽ 5 and θij = 2 for 1 ⩽
i < j ⩽ 5. This distribution would be underdispersed compared with the corresponding
multinomial. It is straightforward to create an object corresponding to the parameters for
this distribution using the package:

R> library("MM")
R> pm1 <- paras(5,pnames=letters[1:5])
R> theta(pm1) <- 2
R> pm1

$p
a b c d e

0.2 0.2 0.2 0.2 0.2

$theta
a b c d e

a NA 2 2 2 2
b NA NA 2 2 2
c NA NA NA 2 2
d NA NA NA NA 2
e NA NA NA NA NA

Now we may sample repeatedly from the distribution (sampling is quick because it does not
require evaluation of the normalization constant). Consider y = 20:

R> set.seed(0)
R> (sample1 <- rMM(n=10, Y=20, paras=pm1))

a b c d e
[1,] 4 4 4 5 3
[2,] 5 3 4 5 3
[3,] 4 5 4 4 3
[4,] 4 4 4 4 4
[5,] 4 3 6 3 4
[6,] 4 4 3 4 5
[7,] 4 4 5 3 4
[8,] 5 4 4 3 4
[9,] 3 6 3 4 4

[10,] 4 4 5 4 3

See how closely clustered the sample is around its mean of (4, 4, 4, 4, 4); compare the wider
dispersion of the multinomial:
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R> pm2 <- pm1
R> theta(pm2) <- 1 # revert to classical multinomial
R> (sample2 <- rMM(n=10, Y=20, paras=pm2))

a b c d e
[1,] 5 5 1 5 4
[2,] 6 6 1 4 3
[3,] 4 1 4 8 3
[4,] 5 3 6 4 2
[5,] 3 3 2 4 8
[6,] 2 4 3 4 7
[7,] 6 2 3 3 6
[8,] 3 3 6 4 4
[9,] 1 6 2 8 3

[10,] 5 3 2 5 5

Thus sample2 is drawn from the classical multinomial. It is then straightforward to perform
a likelihood ratio test on, say, sample1:

R> support1 <- MM_allsamesum(sample1, paras=pm1)
R> support2 <- MM_allsamesum(sample1, paras=pm2)

R> support1-support2

[1] 17.335

Function MM_allsamesum() calculates the log likelihood for a specific parameter object (in
this case, pm1 and pm2 respectively) and we see that, for sample1, hypothesis pm1 is preferable
to pm2 on the grounds of a likelihood ratio of about Λ = 0.03 × 10−6, corresponding to 17.33
units of support. This would exceed the two units of support criterion suggested by Edwards
(1992) and we could reject pm2. Alternatively, we could observe that −2 log Λ is in the tail
region of its asymptotic distribution, χ2

1.
The package includes a comprehensive suite of functionality which is documented through
the R help system and accessible by typing library(help="MM") at the command prompt.

3. The package in use
The package comes with a number of datasets, four of which are illustrated here. We begin
with a small synthetic dataset, then consider data taken from the social sciences, previously
analyzed by Wilson (1989); analyze some pollen counts considered by Mosimann (1962) in
the context of palaeoclimatology; and finally assess a marketing science dataset.

3.1. Synthetic voting dataset

We begin with a small synthetic dataset which is simple enough to illustrate the salient aspects
of the multiplicative multinomial distribution, and the MM package.
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This dataset arises from 96 households each of size 4, in which each member of the house-
hold is noted as voting Lib, Con or Lab respectively. We take n(·, ·, ·) as the voting tally;
thus n(0, 0, 4) = 5 [the first line] means that there are exactly 5 households in which all 4
members vote Labour; similarly n(0, 1, 3) = 8 means that there are exactly 8 households in
which 1 member votes Conservative and the remaining 3 vote Labour.

R> data("voting")
R> cbind(voting,voting_tally)

Lib Con Lab voting_tally
[1,] 0 0 4 5
[2,] 0 1 3 8
[3,] 0 2 2 7
[4,] 0 3 1 4
[5,] 0 4 0 6
[6,] 1 0 3 1
[7,] 1 1 2 7
[8,] 1 2 1 4
[9,] 1 3 0 9

[10,] 2 0 2 5
[11,] 2 1 1 7
[12,] 2 2 0 12
[13,] 3 0 1 2
[14,] 3 1 0 7
[15,] 4 0 0 12

One natural hypothesis is that the data are drawn from a multinomial distribution (alternative
hypotheses might recognize that individuals within a given household may be non-independent
of each other in their voting).
The multinomial hypothesis may be assessed using glm() following Lindsey and Mersch (1992)
but without the interaction terms:

R> Off <- -rowSums(lfactorial(voting))
R> summary(glm(voting_tally ~ -1 + (.) + offset(Off),

data = as.data.frame(voting), family = poisson))

Call:
glm(formula = voting_tally ~ -1 + (.) + offset(Off), family = poisson,

data = as.data.frame(voting))

Coefficients:
Estimate Std. Error z value Pr(>|z|)

Lib 0.9548 0.0706 13.51 < 2e-16
Con 0.9122 0.0728 12.54 < 2e-16
Lab 0.6099 0.0886 6.88 5.8e-12
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(Dispersion parameter for poisson family taken to be 1)

Null deviance: 543.236 on 15 degrees of freedom
Residual deviance: 77.315 on 12 degrees of freedom
AIC: 137

Number of Fisher Scoring iterations: 5

Thus the model fails to fit (77.315 being much larger than the corresponding degrees of
freedom, 12). This is because the observed frequencies of the cells in which all members of
the household vote for the same party (namely for rows 1, 5 and 15 of the data) greatly exceed
the corresponding expected numbers under the simple multinomial model.
The next step is to take account of the fact that individuals within a given household may be
non-independent of each other in their voting intentions (and may indeed tend to disagree with
each other rather than all vote the same way). Positive dependence between individuals in
a household could be modelled by the Dirichlet-multinomial distribution (Mosimann 1962),
but by using the Multiplicative Multinomial introduced here, we are allowing dependence
between individuals in a household to be positive or negative.
The MM parameters may be estimated, again following Lindsey and Mersch (1992) but this
time admitting first-order interaction, using bespoke function Lindsey():

R> Lindsey(voting, voting_tally, give_fit = TRUE)

$MLE
$p

Lib Con Lab
0.36695 0.31515 0.31790

$theta
Lib Con Lab

Lib NA 0.67351 0.48259
Con NA NA 0.65153
Lab NA NA NA

$fit

Call:
glm(formula = jj$d ~ -1 + offset(Off) + (.)^2, family = poisson,

data = data.frame(jj$tbl))

Coefficients:
Estimate Std. Error z value Pr(>|z|)

Lib 1.3745 0.0712 19.31 < 2e-16
Con 1.2224 0.0898 13.61 < 2e-16
Lab 1.2311 0.0925 13.31 < 2e-16
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Lib:Con -0.3952 0.0844 -4.68 2.8e-06
Lib:Lab -0.7286 0.1023 -7.13 1.0e-12
Con:Lab -0.4284 0.0965 -4.44 8.9e-06

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 543.236 on 15 degrees of freedom
Residual deviance: 11.501 on 9 degrees of freedom
AIC: 77.16

Number of Fisher Scoring iterations: 5

Observe that the MLEs of p [viz (0.367, 0.315, 0.318)] are obtained as proportional to the
exponential of the estimated regression coefficients: (e1.375, e1.222, e1.231), normalized to add
to 1.
This model is quite a good fit in the sense that the null deviance 11.5 is not in the tail region
of χ2

9, its null distribution; it can be seen that all 3 interaction parameters are significant and,
for example, θ̂23 = 0.652 = exp (−0.428).
The corresponding conditional cross-ratios are all significantly greater than 1; for example

P̂11hlP̂22hl

P̂12hlP̂21hl

= 1
θ̂2

12
= 1

0.67351162 = 2.2045. (17)

3.2. Housing satisfaction data

We now consider a small dataset taken from Table 1 of Wilson (1989), who analyzed the
datset in the context of overdispersion (Wilson himself took the dataset from Table 1 of Brier
(1980)).
In a non-metropolitan area, there were 18 independent neighbourhoods each of 5 households,
and each household gave its response concerning its personal satisfaction with their home.
The allowable responses were ‘unsatisfied’ (US), ‘satisfied’ (S), and ‘very satisfied’ (VS).

R> data("wilson")
R> head(non_met)

US S VS
[1,] 3 2 0
[2,] 3 2 0
[3,] 0 5 0
[4,] 3 2 0
[5,] 0 5 0
[6,] 4 1 0

Thus the first neighbourhood had three households responding US, two reporting S, and zero
reporting VS; the second neighbourhood had the same reporting pattern.
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Observe that the 5 households within a neighbourhood may not be independent in their
responses. The first step is to recast the dataset into a table format; the package provides a
function gunter() [named for the R-lister who suggested the elegant and fast computational
method]:

R> wilson <- gunter(non_met)
R> wilson

$tbl
US S VS

1 5 0 0
2 4 1 0
3 3 2 0
4 2 3 0
5 1 4 0
6 0 5 0
7 4 0 1
8 3 1 1
9 2 2 1
10 1 3 1
11 0 4 1
12 3 0 2
13 2 1 2
14 1 2 2
15 0 3 2
16 2 0 3
17 1 1 3
18 0 2 3
19 1 0 4
20 0 1 4
21 0 0 5

$d
[1] 1 5 4 2 0 2 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0

Thus 1 neighbourhood reported c(5,0,0), and 5 neighbourhoods reported c(4,1,0) [because
d[1]=1 and tbl[1,]=c(5,0,0); and d[2]=5 and tbl[2,]=c(4,1,0) respectively].
The hypothesis that the data are drawn from a multinomial distribution may again be assessed
by using Lindsey and Mersch’s technique:

R> attach(wilson)
R> Off <- -rowSums(lfactorial(tbl))
R> summary(glm(d~-1+(.)+offset(Off),data=tbl,family=poisson))

Call:
glm(formula = d ~ -1 + (.) + offset(Off), family = poisson, data = tbl)
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Coefficients:
Estimate Std. Error z value Pr(>|z|)

US 0.886 0.111 7.96 1.7e-15
S 0.673 0.132 5.10 3.4e-07
VS -1.355 0.437 -3.10 0.0019

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 110.17 on 21 degrees of freedom
Residual deviance: 21.22 on 18 degrees of freedom
AIC: 49.19

Number of Fisher Scoring iterations: 6

Thus the multinomial model is a reasonable fit, in the sense that the residual deviance of 21.22
is consistent with the null distribution, χ2

18. The slightly increased value would be because
the observed frequencies for neighbourhoods in agreement (that is, either perfect agreement—
c(5,0,0) or c(0,5,0) or c(0,0,5)—or near-perfect, as in c(4,1,0)) exceed the correspond-
ing expected numbers under the simple multinomial model.
The MM parameters may be estimated, again following Lindsey and Mersch (1992) but this
time admitting first-order interaction:

R> Lindsey(wilson,give_fit=TRUE)

$MLE
$p

US S VS
0.494469 0.411254 0.094277

$theta
US S VS

US NA 0.74424 0.59647
S NA NA 0.88449
VS NA NA NA

$fit

Call:
glm(formula = jj$d ~ -1 + offset(Off) + (.)^2, family = poisson,

data = data.frame(jj$tbl))

Coefficients:
Estimate Std. Error z value Pr(>|z|)

US 1.140 0.112 10.20 < 2e-16
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S 0.956 0.161 5.95 2.6e-09
VS -0.517 1.652 -0.31 0.7543
US:S -0.295 0.112 -2.64 0.0084
US:VS -0.517 0.508 -1.02 0.3086
S:VS -0.123 0.545 -0.23 0.8219

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 110.173 on 21 degrees of freedom
Residual deviance: 13.425 on 15 degrees of freedom
AIC: 47.4

Number of Fisher Scoring iterations: 6

Thus in this dataset, only the first interaction parameter US:S is significant. This might be
interpreted as an absence of VS responses coupled with a broader than expected spread split
between US and S. Note that the residual deviance is now less than the corresponding degrees
of freedom.
In this case, the three categories US, S, and VS are ordered, a feature which is not used in the
present approach. It is not clear at this stage how we could best include information about
such ordering into our analysis.
We now check agreement of the observed and expected sufficient statistics:

R> summary(suffstats(wilson))

$row_sums
US S VS

2.61111 2.11111 0.27778

$cross_prods
US S VS

US 9.27778 3.38889 0.38889
S 3.38889 6.55556 0.61111
VS 0.38889 0.61111 0.38889

The summary() method gives normalized statistics so that, for example, the row_sums to-
tal y = 5. This may be compared with the expectation of the maximum likelihood MM
distribution:

R> L <- Lindsey(wilson)

R> expected_suffstats(L,5)

$row_sums
US S VS

2.61111 2.11111 0.27778
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$cross_prods
US S VS

US 9.27778 3.38889 0.38889
S 3.38889 6.55556 0.61111
VS 0.38889 0.61111 0.38889

showing agreement to within numerical precision.

3.3. Mosimann’s forest pollen dataset

Palynology offers a unique perspective on palaeoclimate; pollen is durable, easily identified,
and informative about climate (Faegri and Iversen 1992). We now consider a dataset collected
in the context of palaeoclimate (Sears and Clisby 1955; Clisby and Sears 1955), and further
analyzed by Mosimann (1962).
We consider a dataset taken from the Bellas Artes core from the Valley of Mexico (Clisby and
Sears 1955, Table 2); details of the site are given by Foreman (1955). The dataset comprises
a matrix with N = 73 observations, each representing a depth in the core, and k = 4
columns, each representing a different type of pollen. We follow Mosimann in assuming that
the 73 observations are independent, and in restricting the analysis to depths at which a full
complement of 100 grains were identified.

R> data("pollen")
R> pollen <- as.data.frame(pollen)
R> head(pollen)

Pinus Abies Quercus Alnus
1 94 0 5 1
2 75 2 14 9
3 81 2 13 4
4 95 2 3 0
5 89 3 1 7
6 84 5 7 4

Thus each row is constructed to sum to 100, and there are 4 distinct types of pollen; hence
in our notation y = 100 and k = 4.
Observe that this dataset, in common with the housing satisfaction data considered above,
has to be coerced to histogram form; but this time the numbers are larger. The partitions
package (Hankin 2006) uses generating functions to determine that there are exactly

R> library("partitions")

[1] "partitions" "MM" "stats" "graphics" "grDevices"
[6] "utils" "datasets" "methods" "base"

R> S(rep(100,4),100)
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[1] 176851

possible non-negative integer solutions to y1 + y2 + y3 + y4 = 100 (most of these have zero
observed count). Each of these solutions must be generated and this is achieved using the
compositions() function of the partitions package (Hankin 2007).
First we repeat some of Mosimann’s calculations as a check. Using the ordinary multinomial
distribution Mn(y, p), we find p̂ to be

R> p.hat <- colSums(pollen)/sum(pollen)

Pinus Abies Quercus Alnus
0.8627 0.0141 0.0907 0.0325

The observed sample variances for the counts are

R> apply(pollen,2,var)

Pinus Abies Quercus Alnus
48.51 2.08 25.87 8.19

but if the ordinary multinomial model held, we would expect these variances to be

R> 100*p.hat*(1-p.hat)

Pinus Abies Quercus Alnus
11.84 1.39 8.25 3.14

respectively. This shows that the dataset has pronounced over-dispersion compared to the
ordinary multinomial. Furthermore, the sample correlation matrix is not what we would
expect from the ordinary multinomial.
As Mosimann points out, the sample correlation matrix is

R> cor(pollen)

Pinus Abies Quercus Alnus
Pinus 1.000 -0.3018 -0.896 -0.6892
Abies -0.302 1.0000 0.087 0.0761
Quercus -0.896 0.0870 1.000 0.3595
Alnus -0.689 0.0761 0.360 1.0000

while the correlation matrix for the multinomial corresponding to p̂ is actually

Pinus Abies Quercus Alnus
Pinus 1.000 -0.2999 -0.7917 -0.4592
Abies -0.300 1.0000 -0.0378 -0.0219
Quercus -0.792 -0.0378 1.0000 -0.0578
Alnus -0.459 -0.0219 -0.0578 1.0000
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(We have corrected what seems to be a small typo in the 4th column of this matrix in
Mosimann’s Table 2). It is particularly striking that the data show positive correlations
for 3 entries. Such positive correlations could never arise from the Dirichlet-multinomial
distribution, but they will be exactly matched by our new multiplicative multinomial model.
The full sample covariance matrix for the dataset is

R> var(pollen)

Pinus Abies Quercus Alnus
Pinus 48.51 -3.031 -31.741 -13.735
Abies -3.03 2.079 0.638 0.314
Quercus -31.74 0.638 25.870 5.233
Alnus -13.74 0.314 5.233 8.188

which is precisely the covariance of the multiplicative multinomial distribution at the maxi-
mum likelihood (ML) parameters.
Calculating the Normalizing constant for the MM distribution is computationally expensive;
NormC() takes over 60 seconds to execute on a 2.66 GHz Intel PC running linux. For direct
maximization of the log-likelihood function, for example by MM function optimizer(), one
would have to call NormC() many times. Thus function Lindsey() represents, in this case,
a considerable saving of time in maximizing the log-likelihood (the call below took under 15
seconds elapsed time):

Lindsey(pollen, give_fit=TRUE)

$MLE
$p

Pinus Abies Quercus Alnus
0.273 0.264 0.222 0.241

$theta
Pinus Abies Quercus Alnus

Pinus NA 0.955 0.973 0.954
Abies NA NA 0.962 0.954
Quercus NA NA NA 0.975
Alnus NA NA NA NA

$fit

Call:
glm(formula = jj$d ~ -1 + offset(Off) + (.)^2, family = poisson,

data = data.frame(jj$tbl))

Coefficients:
Estimate Std. Error z value Pr(>|z|)
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Figure 1: Marginal frequency distributions for numbers of each of four pollen types based on
the multinomial distribution (black) and the multiplicative multinomial (red).
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Pinus 3.58095 0.00434 825.28 < 2e-16
Abies 3.55110 0.18558 19.13 < 2e-16
Quercus 3.37725 0.11641 29.01 < 2e-16
Alnus 3.45699 0.13275 26.04 < 2e-16
Pinus:Abies -0.04638 0.00260 -17.81 < 2e-16
Pinus:Quercus -0.02784 0.00133 -20.87 < 2e-16
Pinus:Alnus -0.03918 0.00134 -29.23 < 2e-16
Abies:Quercus -0.04721 0.01661 -2.84 0.0045
Abies:Alnus -0.04749 0.03123 -1.52 0.1284
Quercus:Alnus -0.02563 0.00585 -4.38 1.2e-05

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 5127.46 on 176851 degrees of freedom
Residual deviance: 402.95 on 176841 degrees of freedom
AIC: 563.4

Number of Fisher Scoring iterations: 23

Thus we arrive at an apparently rather symmetrical set of parameter estimates (in the sense
of the elements of p̂ being close to one another, and the elements of θ̂ being close to unity).
For this dataset, we observe that the asymptotic distribution of the residual deviance, χ2

176841,
is not a good approximation for its actual distribution. This is because the frequency data
is overwhelmingly comprised of zeros, with only 66 nonzero frequencies amongst the 176851
compositions. Function glm() tenders a warning to this effect.

3.4. Marketing science: An example of the multivariate multiplicative bi-
nomial

We now illustrate the multivariate multiplicative binomial with an example drawn from the
field of economics. Danaher and Hardie (2005) considered a dataset obtained from a sample
of N = 548 households over four consecutive store trips. For each household, they counted
the total number of egg purchases in their four eligible shopping trips, and the total number of
bacon purchases for the same trips; the hypothesis was that egg consumption was correlated
with bacon consumption.
The dataset is provided with the MM package:

R> data("danaher")
R> danaher

eggs
bacon 0 1 2 3 4

0 254 115 42 13 6
1 34 29 16 6 1
2 8 8 3 3 1
3 0 0 4 1 1
4 1 1 1 0 0
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Thus 16 households purchased eggs twice and bacon once (this is Danaher and Hardie’s
Table 1). The purchases of eggs and bacon are not independent3 and we suggest fitting this
data to the distribution given in Equation 4; here m1 = m2 = 4. The Poisson device of
Lindsey and Mersch is again applicable:

R> fit <- Lindsey_MB(danaher)
R> summary(fit)

Call:
glm(formula = d ~ (.), family = poisson, data = x, offset = Off)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 5.5117 0.0606 90.92 <2e-16
bacon -1.6528 0.1667 -9.92 <2e-16
eggs -1.0487 0.0810 -12.94 <2e-16
`bacon:nbacon` -0.5149 0.0627 -8.22 <2e-16
`eggs:neggs` -0.3555 0.0406 -8.76 <2e-16
`bacon:eggs` 0.3006 0.0598 5.03 5e-07

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 3046.440 on 24 degrees of freedom
Residual deviance: 18.666 on 19 degrees of freedom
AIC: 108.3

Number of Fisher Scoring iterations: 5

and glm() gives a good fit in the sense that the residual deviance of 18.666 is compatible
with its asymptotic null distribution χ2

19.
The bacon:eggs coefficient (ie log ϕ̂ = 0.3006) gives ϕ̂ = e0.3006 = 1.3507, showing strong
positive association.
We can now verify that the expected (marginal) number of egg purchases and bacon purchases
under the ML distribution match the observed. The first step is to create M, the expected
contingency matrix:

R> M <- danaher
R> M[] <- fitted.values(fit)
R> M

eggs
bacon 0 1 2 3 4

0 247.566 119.448 43.999 14.665 3.732
1 40.470 26.374 13.122 5.907 2.030

3Fisher’s exact test gives a p value of 11 × 10−6 with 106 replicates.
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2 6.947 6.115 4.109 2.499 1.160
3 1.484 1.765 1.602 1.315 0.825
4 0.333 0.535 0.656 0.727 0.616

Then we may verify, for example, that the fitted sum of bacon purchases matches its observed
value:

R> bacon <- slice.index(danaher,1)
R> eggs <- slice.index(danaher,2)

R> sum(bacon*danaher) # Observed number of bacon purchases

[1] 710

R> sum(bacon*M) # Expectation; matches

[1] 710

As a final check, we can verify that the sample covariance matches the distribution’s covariance
at the MLE:

R> sum(bacon*eggs*danaher)/N - sum(bacon*danaher)*sum(eggs*danaher)/N^2

[1] 0.144

R> sum(bacon*eggs*M) /N - sum(bacon*M )*sum(eggs*M )/N^2

[1] 0.144

again showing agreement to within numerical precision.

4. Suggestions for further work
The multiplicative multinomial is readily generalized to a distribution with 2k −1 parameters:

P (y1, . . . , yk) =
(

y

y1 . . . yk

) ∏
S⊆[k]

(ΘS)
∏

i∈S yi (18)

where [k] = {1, 2, . . . , k} is the set of all strictly positive integers not exceeding k. Here, the
parameters are indexed by a subset of [k]; it is interesting to note that Θ∅ formally represents
the normalization constant C. In this notation, Equation 3 becomes

∏
S⊆[k]
|S|⩽2

(
y

y1 . . . yk

)
(ΘS)

∏
i∈S yi . (19)
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Equation 18 leads to a distribution of the exponential family type; but interpretation of the
parameters is difficult, and further work would be needed to establish the usefulness of this
extension.
Further, Equation 4 generalizes to

t∏
i=1

(
mi

xi zi

)
pxi

i qzi
i θxizi

i

∏
i<j

ϕ
xixj

ij . (20)

It is possible to generalize the equations in a slightly different way. Consider an r × c ma-
trix n with entries nij and fixed marginal totals. Now suppose that each row of n comprises
independent observations from a multinomial distribution with probabilities p1, . . . , pr, and
likewise the columns are multinomial q1, . . . , qc: This is the null of Fisher’s exact test. Then
one natural probability measure would be

P(n) = 1
C

·

∏
1⩽i1<i2⩽r

θ

∑c

j=1 ni1jni2j

i1i2

∏
1⩽j1<j2⩽c

ϕ

∑r

1=1 nij1 nij2
j1j2∏r

i=1
∏s

j=1 nij ! (21)

(the fixed known row- and column- sums mean that pi and qj , and the marginal multinomial
terms, are absorbed into the normalizing constant C). With a slight abuse of notation this
can be written

P(n) = 1
C

·
∏

Θnn⊤ ∏Φn⊤n∏
n! (22)

where Θ governs row-wise departures from multinomial and Φ governs column-wise depar-
tures; there are a total of r(r − 1)/2 + c(c − 1)/2 free parameters.
The Poisson device of Lindsey and Mersch is again applicable, with the difference that the
enumeration carried out by compositions() is replaced by enumeration of contingency tables
with the correct marginal totals: Function allboards() of the aylmer package (West and
Hankin 2008). A simple example is given under help(sweets).
As pointed out by an anonymous referee, it might be possible to extend either or both of the
new distributions to the context of regression on covariates.

5. Conclusions
In this paper, we considered natural generalizations of the multiplicative binomial distribution
to the multivariate case. The resulting distributions have a number of desirable features,
including a more precise control over the variance than the multinomial, and a straightforward
interpretation in terms of contingency tables.
The distributions belong to the exponential family; this makes fast calculation of maximum
likelihood estimates possible using generalized linear model techniques; in R idiom, the glm()
function is used.
Novel analyses are presented on data drawn from the fields of social science and palaeoclima-
tology.
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