
Package: MM (via r-universe)
September 2, 2024

Type Package

Title The Multiplicative Multinomial Distribution

Description Various utilities for the Multiplicative Multinomial
distribution.

Version 1.6-8

Depends R (>= 2.10.0)

Imports magic (>= 1.5-6), abind, quadform (>= 0.0-2), methods,
mathjaxr, partitions (>= 1.9-14), Oarray

Author Robin K. S. Hankin and P. M. E. Altham

Maintainer Robin K. S. Hankin <hankin.robin@gmail.com>

License GPL-2

LazyLoad yes

NeedsCompilation no

URL https://github.com/RobinHankin/MM

BugReports https://github.com/RobinHankin/MM/issues

RdMacros mathjaxr

Repository https://robinhankin.r-universe.dev

RemoteUrl https://github.com/robinhankin/mm

RemoteRef HEAD

RemoteSha 42169a96368e731b6e14b9f717164b9e2b748890

Contents
MM-package . 2
danaher . 3
Extract.paras . 4
gunter . 5
Lindsey . 6
MB . 8

1

https://github.com/RobinHankin/MM
https://github.com/RobinHankin/MM/issues

2 MM-package

MM . 11
multinomial . 13
NormC . 14
optimizer . 14
paras . 16
pollen . 17
powell . 18
rMM . 18
skellam . 19
suffstats . 20
sweets . 21
voting . 23
wilson . 24

Index 25

MM-package The Multiplicative Multivariate distribution, and the Multivariate
Multiplicative Binomial Distribution

Description

Two generalizations of the Multiplicative Binomial distribution of Altham (1978).

Details

The DESCRIPTION file: This package was not yet installed at build time.

Index: This package was not yet installed at build time.

Author(s)

Robin K. S. Hankin and P. M. E. Altham

Maintainer: Robin K. S. Hankin <hankin.robin@gmail.com>

References

P. M. E. Altham 1978. “Two Generalizations of the Binomial Distribution”. Applied Statistics
27:162–167

P. M. E. Altham and Robin K. S. Hankin 2012. “Multivariate Generalizations of the Multiplicative
Binomial Distribution: Introducing the MM Package”, Journal of Statistical Software, 46(12), 1-23.
doi:10.18637/jss.v046.i12

https://doi.org/10.18637/jss.v046.i12

danaher 3

Examples

data(voting)
Lindsey(voting, voting_tally)

jj <- paras(3)
rMM(10,4,jj)

danaher Dataset due to Danaher

Description

Dataset due to Danaher; also an analysis ab initio

Usage

data(danaher)

Format

• danaher is a matrix (of class Oarray) that represents Danaher and Hardie’s Table 1

Details

Since bacon is often eaten with eggs, it is reasonable to expect that it is purchased with eggs.

Danaher and Hardie use a dataset obtained from a sample of 548 households over four consecutive
store trips. They considered only grocery shopping trips with a total basket value of at least five
dollars. For each household, they counted the total number of bacon purchases in their four eligible
shopping trips, and the total number of egg purchases for the same trips.

Object danaher is a five-by-five matrix of class Oarray with entry (i, j) indicating the number
of shoppers buying bacon on i occasions and eggs on j occasions (note the zero offset). Thus
danaher[1,2]=16 indicates that 16 shoppers bought bacon on 1 occasion and eggs on 2 occasions.

References

P. J. Danaher and B. G. S. Hardie 2005. “Bacon with your eggs? Applications of a new bivariate
beta-binomial distribution”. The American Statistician, 59(4):282

See Also

optimizer

4 Extract.paras

Examples

data(danaher)
Lindsey_MB(danaher)

Dataset from table 3 follows; see also the example at Lindsey.Rd
mags <-
c(2463, 35, 44, 14, 16, 7, 262, 20, 2, 2, 0, 0, 0, 2, 17, 2,
0, 2, 0, 0, 3, 8, 0, 0, 1, 0, 0, 4, 8, 0, 1, 1, 0, 0, 3, 3,
0, 0, 0, 0, 0, 1, 52, 2, 1, 0, 2, 0, 22)
dim(mags) <- c(7,7)
mags <- Oarray::as.Oarray(mags,offset=0)
dimnames(mags) <-
list(AA=as.character(0:6),Sig=as.character(0:6)) # messy kludge in Lindsey_MB()
summary(Lindsey_MB(mags))

Extract.paras Extract or Replace parameters of a paras object

Description

Methods for "[" and "[<-", i.e., extraction or subsetting of paras objects.

Arguments

x Object of class paras

i Elements to extract or replace

value Replacement value

Value

Always returns an object of class paras.

Methods

• x[i]

• x[i] <- value

• x[i,j]

• x[i,j] <- value

Note

These methods are included for completeness; it’s not clear to me that they are likely to be used
by anyone. It might be better to always use constructions like x <- paras(4) ; p(x)[2] <- 0.1
instead; YMMV.

gunter 5

Author(s)

Robin K. S. Hankin

Examples

x <- paras(4)
x[2] <- 0.1
x[1,2] <- 0.12
x

gunter Convert from multiple multivariate observations to tabular form

Description

Convert from a matrix with rows corresponding to multivariate observations, to a tabular form listing
every possible combination together with the number of times that combination was observed.

Usage

gunter(obs)
S3 method for class 'gunter'
print(x, ...)

Arguments

obs Argument. If a matrix, interpret each row as a multivariate observation (so the
rowsums are constant). If an object of class MB, interpret appropriately; if an
Oarray, coerce to an MB object

x Object of class gunter to be printed by the print method

... Further arguments, currently ignored

Value

For matrices and data frames, function gunter() returns an object of class gunter: a list of two
elments, the first being a matrix (‘obs’) with rows being possible observations, and the second (‘d’)
a vector with one entry for each row of matrix obs.

For MB objects and Oarray objects, function gunter() returns an object of class gunter_MB.

The print method returns its argument, invisibly, after printing it coerced to a list.

Author(s)

Bert Gunter, with tiny alterations by Robin Hankin

6 Lindsey

Examples

data(wilson)
gunter(non_met)

data(danaher)
gunter(danaher) # object of class gunter_MB

Lindsey The Poisson device of Lindsey and Mersch (1992).

Description

Function Lindsey() returns a maximum likelihood fit of the multiplicative multinomial using the
Poisson device of Lindsey and Mersch (1992), and in the context of the multiplicative multinomial
by Altham and Lindsey (1998).

Function Lindsey_MB() returns a maximum likelihood fit for the multivariate multiplicative bino-
mial, for the special case of a bivariate distribution. An example of coercing a table to the correct
form for use with Lindsey_MB() is given in the examples section below. Also, see danaher for
another example.

Usage

Lindsey(obs, n = NULL, give_fit = FALSE)
Lindsey_MB(a)
S3 method for class 'Lindsey_output'
print(x, ...)

Arguments

obs In Lindsey(), an integer matrix with each row corresponding to an observation.
All row sums must match

n Vector with elements corresponding to the rows of obs; default of NULL corre-
sponds to observing each row of obs once

a In Lindsey_MB(), an object that is coerced to one of class gunter_MB. Typically,
the user supplies an Oarray object or an MB object

give_fit Boolean, with default FALSE meaning to return just the fit, coerced to an object
of class paras and TRUE meaning to return a list with two elements, the first
being a paras object and the second being the fit returned by glm()

x In the print method, object of class Lindsey_output

... In the print method, further arguments, currently ignored

Lindsey 7

Details

Uses the device first described by Lindsey in 1992; the ‘meat’ of which has R idiom

Off <- -rowSums(lfactorial(jj$tbl))

glm(jj$d ~ -1 + offset(Off) + (.)^2, data=data, family=poisson)

Function Lindsey(..., give_fit=TRUE) returns an object of class Lindsey_output, which has
its own print method (which prints the summary of the fit rather than use the default method).

Function Lindsey(..., give_fit=FALSE) returns an object of class paras, which can then be
passed on to functions such as rMM(), which take a paras object.

Function Lindsey_MB() returns an object of class glm.

Author(s)

P. M. E. Altham and Robin K. S. Hankin

References

• J. K. Lindsey and G. Mersch 1992. “Fitting and comparing probability distributions with log
linear models”, Computational Statistics and Data Analysis, 13(4):373–384

• P. M. E. Altham and J. K. Lindsey, 1998. “Analysis of the human sex ratio using overdisper-
sion models”, Applied Statistics, 47:149–157

See Also

gunter, danaher

Examples

data(voting)
(o <- Lindsey(voting, voting_tally))
rMM(10,5,o)

data(danaher)
Lindsey_MB(danaher)

Not run: #(takes a long time)
data(pollen)
Lindsey(pollen)

End(Not run)

Example of Lindsey_MB() in use follows.

a <- matrix(c(63,40,26,7,69,42,19,5,48,21,16,2,33,11,9,1,21,8,9,0,
7,8,1,0,5,3,1,0,9,2,0,0),byrow=TRUE,ncol=4)

Alternatively, you can get this from the pscl package as follows:
library(pscl); data(bioChemists)
a <- table(subset(bioChemists, fem == 'Men' & art < 8))

8 MB

dimnames(a) <- list(papers=0:7,children=0:3)
require(Oarray)
a <- as.Oarray(a,offset=0)
thus a[3,1]==11 means that 11 subjects had 3 papers and 1 child

summary(Lindsey_MB(a))

MB Multivariate multiplicative binomial distribution

Description

Various utilities to coerce and manipulate MB objects

Usage

MB(dep, m, pnames=character(0))
S3 method for class 'MB'
as.array(x, ...)
S4 method for signature 'MB'
getM(x)
S3 method for class 'gunter_MB'
print(x, ...)

Arguments

dep Primary argument to MB(). Typically a matrix with each row being an observa-
tion (see ‘details’ section below for an example). If an object of class Oarray,
function MB() coerces to an MB object

m Vector containing the relative sizes of the various marginal binomial distribu-
tions

x Object of class MB to be converted to an Oarray object

... Further arguments to as.array(), currently ignored

pnames In function MB(), a character vector of names for the entries

Details

Function MB() returns an object of class MB. This is essentially a matrix with one row corresponding
to a single observation; repeated rows indicate identical observations as shown below. Observational
data is typically in this form. The idea is that the user can coerce to a gunter_MB object, which is
then analyzable by Lindsey().

The multivariate multiplicative binomial distribution is defined by

t∏
i=1

(
mi

xi zi

)
pxi
i qzii θxizi

i

∏
i<j

ϕ
xixj

ij

MB 9

Thus if θ = ϕ = 1 the system reduces to a product of independent binomial distributions with
probability pi and size mi for i = 1, . . . , t.

There follows a short R transcript showing the MB class in use, with annotation.

The first step is to define an m vector:

R> m <- c(2,3,1)

This means that m1 = 2,m2 = 3,m3 = 1. So m1 = 2 means that i = 1 corresponds to a binomial
distribution with size 2 [that is, the observation is in the set 0, 1, 2]; and m2 = 3 means that i = 2
corresponds to a binomial with size 3 [ie the set 0, 1, 2, 3].

Now we need some observations:

R> a <- matrix(c(1,0,0, 1,0,0, 1,1,1, 2,3,1, 2,0,1),5,3,byrow=T)
R> a

[,1] [,2] [,3]
[1,] 1 0 0
[2,] 1 0 0
[3,] 1 1 1
[4,] 2 3 1
[5,] 2 0 1

In matrix a, the first observation, viz c(1,0,0) is interpreted as x1 = 1, x2 = 0, x3 = 0. Thus,
because xi + zi = mi, we have z1 = 1, z2 = 3, z3 = 1. Now we can create an object of class MB,
using function MB():

R> mx <- MB(a, m, letters[1:3])

The third argument gives names to the observations corresponding to the columns of a. The values
of m1,m2,m3 may be extracted using getM():

R> getM(mx)
a b c
2 3 1
R>

The getM() function returns a named vector, with names given as the third argument to MB().

Now we illustrate the print method:

R> mx
a na b nb c nc

[1,] 1 1 0 3 0 1
[2,] 1 1 0 3 0 1
[3,] 1 1 1 2 1 0
[4,] 2 0 3 0 1 0
[5,] 2 0 0 3 1 0
R>

10 MB

See how the columns are in pairs: the first pair total 2 (because m1 = 2), the second pair total 3
(because m2 = 3), and the third pair total 1 (because m3 = 1). Each pair of columns has only a
single degree of freedom, because mi is known.

Also observe how the column names are in pairs. The print method puts these in place. Take the
first two columns. These are named ‘a’ and ‘na’: this is intented to mean ‘a’ and ‘not a’.

We can now coerce to a gunter_MB:

R> (gx <- gunter(mx))
$tbl

a b c
1 0 0 0
2 1 0 0
3 2 0 0
[snip]
24 2 3 1

$d
[1] 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1

$m
a b c
2 3 1

Take the second line of the element tbl of gx, as an example. This reads c(1,0,0) corresponding
to the observations of a,b,c respectively, and the second line of element d [“d” for “data”], viz 2,
shows that this observation occurred twice (and in fact these were the first two lines of a).

Now we can coerce object mx to an array:

R> (ax <- as.array(mx))
, , c = 0

b
a 0 1 2 3
0 0 0 0 0
1 0 0 2 0
2 0 0 0 0

, , c = 1

b
a 0 1 2 3
0 0 1 0 0
1 0 0 0 0
2 1 1 0 0

>

(actually, ax is an Oarray object). The location of an element in ax corresponds to an observation
of abc, and the entry corresponds to the number of times that observation was made. For example,
ax[1,2,0]=2 shows that c(1,2,0) occurred twice (the first two lines of a).

MM 11

The Lindsey Poisson device is applicable: see help(danaher) for an application to the bivariate
case and help(Lindsey) for an example where a table is created from scratch.

Author(s)

Robin K. S. Hankin

See Also

MM, Lindsey, danaher

Examples

a <- matrix(c(1,0,0, 1,0,0, 1,1,1, 2,3,1, 2,0,1),5,3,byrow=TRUE)
m <- c(2,3,1)
mx <- MB(a, m, letters[1:3]) # mx is of class 'MB'; column headings

mean "a" and "not a".
ax <- as.array(mx)
gx <- gunter(ax)
ax2 <- as.array(gx)

data(danaher)
summary(Lindsey_MB(danaher))

MM Various multiplicative multinomial probability utilities

Description

Various multiplicative multinomial probability utilities for different types of observation

Usage

MM(y,n=NULL,paras)
MM_allsamesum(y, n=NULL, paras)
MM_differsums(y, n=NULL, paras)
MM_allsamesum_A(y, paras)
MM_differsums_A(y, paras)
MM_single(yrow, paras, givelog=FALSE)
MM_support(paras, ss)

Arguments

y Observations: a matrix, each row is a single observation

yrow A single observation corresponding to one row of matrix y

n Integer vector with one element for each row of y. Default value of NULL means
to interpret each row of y as being observed once

12 MM

ss Sufficient statistics, as returned by suffstats()

givelog Boolean in MM_single() with TRUE meaning to return the log likelihood and
default FALSE meaning to return the likelihood

paras Object of class paras

Details

Consider non-negative integers y1, . . . , yk with
∑

yi = y. Then suppose the frequency function of
the distribution Y1, . . . , Yk is

C ·
(

y

y1, . . . , yk

) k∏
i=1

pyi

i

∏
1≤i<j≤k

θij
yiyj

where pi, . . . , pk ≥ 0,
∑

pi = 1 correspond to probabilities; and θij > 0 for 1 ≤ i < j ≤ k are
additional parameters.

Here C stands for a normalization constant:

C = C(p, θ, Y) =
∑

y1+···+yk=y

k∏
i=1

pyi

i

∏
1≤i<j≤k

θij
yiyj

which is evaluated numerically. This is computationally expensive.

The usual case is to use function MM().

• Function MM() returns the log of the probability of a matrix of rows of independent multino-
mial observations. It is a wrapper for MM_allsamesum() and MM_differsums(). Recall that
optional argument n specifies the number of times that each row is observed. Calls NormC().

• Function MM_allsamesum() gives the log of the probability of observing a matrix where the
rowsums are identical. Calls NormC().

• Function MM_differsums() gives the log of the probability of observing a matrix where the
rowsums are not necessarily identical. Warning: This function takes a long time to run. Calls
NormC(), possibly many times.

• Functions MM_allsamesum_A() and MM_differsums_A() are analogous to functions MM_allsamesum()
and MM_differsums() but interpret the matrix y as having rows corresponding to observa-
tions; each row is observed once, as in data(pollen). Both call NormC().

• Function MM_single() gives a likelihood function for a paras object with a single multino-
mial observation (that is, a single line of matrix y). Does not call NormC().

• Function MM_support() gives the support (that is, the log-likelihood) of a paras object; ar-
gument ss is the sufficient statistic, as returned by suffstats(). Does not call NormC().

• Function dMM() [documented more fully at rMM.Rd] gives the probability of a single multi-
variate observation (ie a single row of the matrix argument y). Calls NormC().

Author(s)

Robin K. S. Hankin

multinomial 13

Examples

data(voting)

data(voting)
p <- Lindsey(voting, voting_tally)

MM(voting,voting_tally,p) #No other value of 'p' gives a bigger value

multinomial Multinomial function

Description

The multinomial function and its logarithm

Usage

multinomial(x)
lmultinomial(x)

Arguments

x Numeric vector

Details

Function multinomial() returns(
n

n1, n2, . . . , nk

)
=

n!

n1!n2! · · ·nk!

where
∑

i ni = n, and function lmultinomial() returns the natural logarithm of this.

Note

Uses logarithmic functions to avoid overflow.

Author(s)

Robin K. S. Hankin

Examples

x <- runif(10)

exp(lmultinomial(x)) - multinomial(x) #should be small

14 optimizer

NormC Normalizing constant for the multiplicative multinomial

Description

Calculates the normalizing constant for the multiplicative multinomial using direct numerical sum-
mation

Usage

NormC(Y, paras, log = FALSE)

Arguments

Y Total number of observations

paras Object of class paras

log Boolean, with default FALSE meaning to return the value, and TRUE meaning to
return the natural logarithm

Author(s)

Robin K. S. Hankin

Examples

jj <- paras(3)
theta(jj) <- 2
NormC(5,jj)

optimizer Maximum likelihood estimator for the MM

Description

Maximum likelihood estimator for the MM

Usage

optimizer(y, n = NULL, start = NULL, method = "nlm",
printing = FALSE, give_fit=FALSE, ...)

optimizer_allsamesum(y, n = NULL, start = NULL, method = "nlm",
printing = FALSE, give_fit=FALSE, ...)

optimizer_differsums(y, n = NULL, start = NULL, method = "nlm",
printing = FALSE, give_fit=FALSE, ...)

optimizer 15

Arguments

y Matrix with each row being a possible observation

n Counts of observations corresponding to rows of y

start Start value for optimization routine, taken to be an object of class paras. Default
value of NULL means to start with Lindsey(y,n), which theoretically should be
the maximum likelihood estimate

method String giving which optimization method to use. Default of Nelder means to
use optim() with the Nelder-Mead method; the other supported option is nlm

printing Boolean, with TRUE meaning to print information as the optimization progresses
and default FALSE meaning to print nothing

give_fit Boolean, with default FALSE meaning to return the maximum likelihood esti-
mate in the form of a paras object, and TRUE meaning to return a two-element
list, the first being the output of nlm() or optim() and the second being the
MLE

... Further arguments passed to the optimization routine. In particular, note that
hessian=TRUE is useful in conjunction with give_fit=TRUE

Details

Function optimizer() is the user-friendly version: it is a wrapper for optimizer_samesum() and
optimizer_differsums(); it dispatches according to whether the rowsums are identical or not.

These functions are slow because they need to evaluate NormC() repeatedly, which is expensive.

Function optimizer_samesum() nominally produces the same output as Lindsey(), but is more
computationally intensive.

Author(s)

Robin K. S. Hankin

See Also

Lindsey

Examples

data(voting)
p1 <- Lindsey(voting,voting_tally)
p2 <- optimizer(voting,voting_tally,start=p1)

theta(p1) - theta(p2) # Should be zero

Not run:
data(pollen)
p1 <- optimizer(pollen)
p2 <- Lindsey(pollen)
theta(p1) - theta(p2) # Isn't zero...numerical scruff...

16 paras

End(Not run)

paras Manipulate a paras object

Description

Various utilities to manipulate paras objects. Functions pnames() and pnames<-() operate on MB
objects as expected.

Usage

paras(x, p, theta, pnames = character(0))
p(x) <- value
theta(x) <- value
p(x)
theta(x)
pnames(x)
pnames(x) <- value
getVals(x)
S4 method for signature 'paras'
length(x)

Arguments

x Object of class paras

p In function paras(), a vector of the first k − 1 elements of the probabilities

theta In function paras(), a k by k matrix with diagonal composed of ones

pnames In function paras(), a character vector of names for the entries

value Replacement value

Details

A paras object contains the parameters needed to specify a multiplicative multinomial distribution.

Suppose p is an object of class paras object. Then p is a list of two elements. The first element, p,
is a vector of length length(p) and the second is an upper-diagonal matrix square matrix of size
length(p). The vignette gives further details.

The functions documented here allow the user to inspect and change paras objects.

Author(s)

Robin K. S. Hankin

See Also

MM, MB

pollen 17

Examples

jj <- paras(5)
pnames(jj) <- letters[1:5]
p(jj) <- c(0.1, 0.1, 0.3, 0.1)
theta(jj) <- matrix(1:25,5,5)
pnames(jj) <- letters[1:5]
jj

OK, we've defined jj, now use it with some other functions:
dMM(rep(1,5),jj)
MM_single(1:5,jj)
rMM(2,9,jj)

pollen Pollen data from Mosimann 1962

Description

Data from Mosimann 1962 detailing forest pollen counts

Usage

data(pollen)

Format

A matrix with four columns and 76 rows.

Details

The rows each sum to 100; the values are counts of four different types of pollen. Each row corre-
sponds to a different level in the core; the levels are in sequence with the first row being most recent
and the last row being the oldest.

References

J. E. Mosimann 1962. “On the compound multinomial distribution, the multivariate β-distribution,
and correlations among proportions”. Biometrika, volume 49, numbers 1 and 2, pp65-82.

Examples

Not run:
data(pollen)
Lindsey(pollen)

End(Not run)

18 rMM

powell Dataset due to Powell (1990)

Description

Dataset due to Powell (1990)

Usage

data(powell)

Format

A frequency table of counts of association data.

Source

• W. Powell, M. Coleman and J. McNicol 1990 “The statistical analysis of potato culture data”.
Plant Cell, Tissue and Organ Culture 23:159-164

Examples

data(powell)
Lindsey(powell, powell_counts)

rMM Random samples from the multiplicative multinomial

Description

Density, and random samples drawn from, the multiplicative multinomial

Usage

rMM(n, Y, paras, burnin = 4*Y, every = 4*Y, start = NULL)
dMM(Y, paras)

Arguments

n Number of observations to make
Y Sum of each observation (for example, 100 for the pollen dataset, 4 for voting)
paras Parameters of the MM distribution; an object of class paras
every Each row is recorded every every steps through the Markov chain. Thus every=10

means every tenth row is written to the returned matrix during MH process (and
the other nine values are discarded)

burnin Number of initial observations to ignore
start Observation to start simulation, with default NULL corresponding to using a ran-

dom start vector

skellam 19

Details

Function rMM() uses standard Metropolis-Hastings simulation.

Function dMM() is documented here for convenience; see help(MM) for related functionality.

Value

Returns a matrix with n rows and length(paras) columns. Each row is an observation.

Author(s)

Robin K. S. Hankin

See Also

MM

Examples

data(voting)
rMM(10,4,Lindsey(voting,voting_tally))

p <- paras(3)
theta(p) <- 2
dMM(1:3,p)

skellam Brassica Dataset due to Catcheside

Description

Dataset due to Catcheside, used by Skellam (1948) and subsequently by Altham (1978).

Usage

data(skellam)

Format

A frequency table of counts of association data.

Source

• J. G. Skellam 1948. “A probability distribution derived from the binomial distribution by
regarding the probability of success as variable between the sets of trials”. Journal of the
Royal Statistical Society, series B (Methodological). Volume 10, number 2, pp257-248.

• D. Catcheside 1937. Cytologia, Fujii Jub. Vol.

20 suffstats

Examples

data(skellam)
Lindsey(skellam, skellam_counts)

suffstats Sufficient statistics for the multiplicative multinomial

Description

Calculate, manipulate, and display sufficient statistics of the multiplicative multinomial. Function-
ality for analysing datasets, and distributions specified by their parameters is given; summary and
print methods are also documented here.

Usage

suffstats(y, n = NULL)
expected_suffstats(L,Y)
S3 method for class 'suffstats'
print(x, ...)
S3 method for class 'suffstats'
summary(object, ...)
S3 method for class 'summary.suffstats'
print(x, ...)

Arguments

y, n In function suffstats(), argument y is a matrix with each row being a possible
observation and n is counts of observations corresponding to rows of y with
default NULL interpreted as each row of y being observed once. If y is an object
of class gunter, this is interpreted sensibly

L, Y In function expected_suffstats(), argument L is an object of class Lindsey
[typically returned by function Lindsey()], and Y is the known constant sum (ie
the rowSums() of the observations)

x, object An object of class suffstats or summary.suffstats, to be printed or summa-
rized

... Further arguments to the print or summary methods. Currently ignored

Details

Function suffstats() returns a list comprising a set of sufficient statistics for the observations
y,[n].

This function requires that the rowsums of y are all identical.

sweets 21

Value

Function suffstats() returns a list of four components:

Y Rowsums of y

nobs Number of observations

row_sums Column sums of y, counted with multiplicity

cross_prods Matrix of summed squares

Function summary.suffstats() provides a summary of a suffstats object that is a list with
two elements: row_sums and cross_prods, normalized with nobs and Y so that the values are
comparable with that returned by expected_suffstats(). In particular, the sum of row_sums is
the known sum y.

Author(s)

Robin Hankin and P. M. E. Altham

Examples

data(voting)
suffstats(voting, voting_tally)

data(wilson)
wilson <- gunter(non_met)
suffstats(wilson)

L <- Lindsey(wilson)

expected_suffstats(L,5)
summary(suffstats(wilson)) ## matches.

summary(suffstats(rMM(10,5,L))) # should be close.

sweets Synthetic dataset due to Hankin

Description

Four objects:

• sweets is a 2× 3× 21 array

• sweets_tally is a length 37 vector

• sweets_array is a 2× 3× 37 vector

• sweets_table is a 37× 6 matrix

22 sweets

Usage

data(sweets)

Details

Object sweets is the raw dataset; objects sweets_table and sweets_tally are processed versions
which are easier to analyze.

The father of a certain family brings home nine sweets of type mm and nine sweets of type jb each
day for 21 days to his children, AMH, ZJH, and AGH.

The children share the sweets amongst themselves in such a way that each child receives exactly 6
sweets.

• Array sweets has dimension c(2,3,21): 2 types of sweets, 3 children, and 21 days. Thus
sweets[,,1] shows that on the first day, AMH chose 0 sweets of type mm and 6 sweets of type
jb; child ZJH chose 3 of each, and child AGH chose 6 sweets of type mm and 0 sweets of type
jb.
Observe the constant marginal totals: the kids have the same overall number of sweets each,
and there are a fixed number of each kind of sweet.

• Array sweets_array has dimension c(2,3,37): 2 sweets, 3 children, and 37 possible ways of
arranging a matrix with the specified marginal totals. This can be produced by allboards()
of the aylmer package.

• sweets_table is a dataframe with six columns, one for each combination of child and sweet,
and 37 rows, each row showing a permissible arrangement. All possibilities are present. The
six entries of sweets[,,1] correspond to the six elements of sweets_table[1,]; the column
names are mnemonics.

• sweets_tally shows how often each of the arrangements in sweets_tally was observed
(that is, it’s a table of the 21 observations in sweets)

Source

The Hankin family

Examples

data(sweets)

show correspondence between sweets_table and sweets_tally:
cbind(sweets_table, sweets_tally)

Sum the data, by sweet and child and test:
fisher.test(apply(sweets,1:2,sum))
Not significant!

Now test for overdispersion.
First set up the regressors:

voting 23

jj1 <- apply(sweets_array,3,tcrossprod)
jj2 <- apply(sweets_array,3, crossprod)
dim(jj1) <- c(2,2,37)
dim(jj2) <- c(3,3,37)

theta_xy <- jj1[1,2,]
phi_ab <- jj2[1,2,]
phi_ac <- jj2[1,3,]
phi_bc <- jj2[2,3,]

Now the offset:
Off <- apply(sweets_array,3,function(x){-sum(lfactorial(x))})

Now the formula:
f <- formula(sweets_tally~ -1 + theta_xy + phi_ab + phi_ac + phi_bc)

Now the Lindsey Poisson device:
out <- glm(formula=f, offset=Off, family=poisson)

summary(out)
See how the residual deviance is comparable with the degrees of freedom

voting Synthetic dataset of voting behaviour due to Altham

Description

Synthetic dataset of voting behaviour due to Altham

Usage

data(voting)

Format

voting is a three-column matrix with each row being a configuration of voting in a household with
four members, and three choices. Vector voting_tally is a list of how many households voted, and
Nvoting_tally is a more extreme dataset of the same type, used to uncover bugs in Lindsey().

Source

Supplied by P. M. E. Altham

Examples

data(voting)
Lindsey(voting,voting_tally)

24 wilson

wilson Housing Dataset due to Wilson

Description

Dataset due to Wilson

Usage

data(wilson)

Format

Two objects, met_area and non_met, which have three columns and either 17 or 18 rows. Each
row corresponds to a neighborhood of five households, each of which votes for one of three choices:
US, S, or VS. Each column corresponds to one of these choices. The rowsums are constant because
there are exactly five households in each neighborhood.

Source

• J. R. Wilson 1989. “Chi-square tests for Overdispersion with Multiparameter Estimates”,
Journal of the Royal Statistical Society. Series C (Applied Statistics), 38(3):441–453

• S. S. Brier 1980. “Analysis of Contingency Tables Under Cluster Sampling”, Biometrika
67(3):591–596

Examples

data(wilson)
Lindsey(non_met)

Index

∗ datasets
danaher, 3
pollen, 17
powell, 18
skellam, 19
sweets, 21
voting, 23
wilson, 24

∗ math
Extract.paras, 4

[,paras-method (Extract.paras), 4
[.paras (Extract.paras), 4
[<-,paras-method (Extract.paras), 4
[<-.paras (Extract.paras), 4

as.array.gunter_MB (MB), 8
as.array.MB (MB), 8

bioChemists (Lindsey), 6

Catcheside (skellam), 19
catcheside (skellam), 19
counts (MB), 8
counts,MB-method (MB), 8

danaher, 3, 7, 11
dMM (rMM), 18

expected_suffstats (suffstats), 20
extract (Extract.paras), 4
Extract.paras, 4

getM (MB), 8
getM,MB-method (MB), 8
getVals (paras), 16
getVals,paras-method (paras), 16
gunter, 5, 7
gunter,data.frame-method (gunter), 5
gunter,matrix-method (gunter), 5
gunter,MB-method (gunter), 5
gunter,Oarray-method (gunter), 5

length,paras-method (paras), 16
Lindsey, 6, 11, 15
Lindsey_MB (Lindsey), 6
lmultinomial (multinomial), 13

MB, 8, 16
MB-class (MB), 8
met_area (wilson), 24
MM, 11, 11, 16, 19
MM-package, 2
MM_allsamesum (MM), 11
MM_allsamesum_A (MM), 11
MM_differsums (MM), 11
MM_differsums_A (MM), 11
MM_single (MM), 11
MM_support (MM), 11
multinomial, 13

non_met (wilson), 24
NormC, 14
Nvoting_tally (voting), 23

optimizer, 3, 14
optimizer_allsamesum (optimizer), 14
optimizer_differsums (optimizer), 14

p (paras), 16
p,paras-method (paras), 16
p<- (paras), 16
p<-,paras-method (paras), 16
paras, 16
paras-class (paras), 16
pnames (paras), 16
pnames,MB-method (paras), 16
pnames,paras-method (paras), 16
pnames<- (paras), 16
pnames<-,MB-method (paras), 16
pnames<-,paras-method (paras), 16
pollen, 17
Powell (powell), 18

25

26 INDEX

powell, 18
powell_counts (powell), 18
print.gunter (gunter), 5
print.gunter_MB (MB), 8
print.Lindsey_output (Lindsey), 6
print.suffstats (suffstats), 20
print.summary.suffstats (suffstats), 20

rMM, 18

Skellam (skellam), 19
skellam, 19
skellam_counts (skellam), 19
suffstats, 20
summary.suffstats (suffstats), 20
sweets, 21
sweets_array (sweets), 21
sweets_table (sweets), 21
sweets_tally (sweets), 21

theta (paras), 16
theta,paras-method (paras), 16
theta<- (paras), 16
theta<-,paras-method (paras), 16

voting, 23
voting_tally (voting), 23

wilson, 24

	MM-package
	danaher
	Extract.paras
	gunter
	Lindsey
	MB
	MM
	multinomial
	NormC
	optimizer
	paras
	pollen
	powell
	rMM
	skellam
	suffstats
	sweets
	voting
	wilson
	Index

